首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are at least 3 isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, a bifunctional enzyme which catalyzes the synthesis and degradation of fructose 2,6-bisphosphate. A 22-kb rat gene that encodes the heart isozyme has been identified and compared with the 55-kb rat gene encoding the liver and muscle isozymes which had been described earlier. Although these 2 genes include 12 successive similar exons, they contain dissimilar exons at both ends, consistent with the occurrence of different regulatory domains at the N- and C-termini in the 3 isozymes.  相似文献   

2.
3.
4.
5.
To understand the mechanism by which the activity of the 6-phosphofructo-2-kinase (6PF-2K) of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is stimulated by its substrate ATP, we studied two mutants of the enzyme. Mutation of either Arg-279, the penultimate basic residue within the Walker A nucleotide-binding fold in the bisphosphatase domain, or Arg-359 to Ala eliminated the activation of the chicken 6PF-2K by ATP. Binding analysis by fluorescence spectroscopy using 2'(3')-O-(N-methylanthraniloyl)-ATP revealed that the kinase domains of these two mutants, unlike that of the wild type enzyme, showed no cooperativity in ATP binding and that the mutant enzymes possess only the high affinity ATP binding site, suggesting that the ATP binding site on the bisphosphatase domain represents the low affinity site. This conclusion was supported by the result that the affinity of ATP for the isolated bisphosphatase domain is similar to that for the low affinity site in the wild type enzyme. In addition, we found that the 6PF-2K of a chimeric enzyme, in which the last 25 residues of chicken enzyme were replaced with those of the rat enzyme, could not be activated by ATP, despite the fact that the ATP-binding properties of this chimeric enzyme were not different from those of the wild type chicken enzyme. These results demonstrate that activation of the chicken 6PF-2K by ATP may result from allosteric binding of ATP to the bisphosphatase domain where residues Arg-279 and Arg-359 are critically involved and require specific C-terminal sequences.  相似文献   

6.
The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

7.
The rat cDNA for the muscle-type (M) isozyme of 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) contains two putative translation initiation sites. To determine whether the M isozyme expressed in rat skeletal muscle corresponds to the short (PFK2M-sf) or the long (PFK2M-lf) isoform, we have expressed them in Escherichia coli. A third construction was also expressed in which the second ATG codon was deleted (PFK2M-lf delta ATG) to ensure that initiation started at the first ATG. The properties of these recombinant proteins were compared with those of the PFK-2/FBPase-2 present in rat skeletal muscle and liver. The recombinant proteins displayed PFK-2 and FBPase-2 activities and the M(r) values of the subunits measured by SDS-polyacrylamide gel electrophoresis were compatible with the calculated ones. The purified recombinant lf form contained not only the expected lf band (54,500 M(r)) but also the sf band (52,000 M(r)), indicating that the expression system could synthesize the long and the short isoforms from the same mRNA. The kinetic properties of the recombinant sf form were not different from those of the rat muscle enzyme. By contrast, lf delta ATG PFK-2 displayed a higher Km for its substrates and a lower Vmax. Immunoblotting with an antibody directed against the long isoform revealed a 54,500 M(r) band both in the lf and the lf delta ATG recombinant, but no band in rat skeletal muscle extracts. In these extracts, one band of 52,000 and a minor one of 54,500 M(r) were detected by an anti PFK-2/FBPase-2 antibody. The 54,500 M(r) band was recognized by an antibody directed against the L isozyme, suggesting that a small amount of the latter is expressed in skeletal muscle. Thus, the M isozyme differs from the L isozyme by replacement of the first 32 amino acids of the L isozyme by an unrelated nonapeptide.  相似文献   

8.
9.
The crystal structures of the human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in three different liganding states were determined and compared with those of the rat testis isozyme. A set of amino acid sequence heterogeneity from the two distinct genes encoding the two different tissue isozymes leads to both global and local conformational differences that may cause the differences in catalytic properties of the two isozymes. The sequence differences in a beta-hairpin loop in the kinase domain causes a translational shift of several hydrophobic interactions in the dimeric contact region, and its propagation to the domains interface results in a 5 degrees twist of the entire bisphosphatase domain relative to the kinase domain. The bisphosphatase domain twist allows the dimeric interactions between the bisphosphatase domains, which are negligible in the testis enzyme, and as a result, the conformational stability of the domain is increased. Sequence polymorphisms also confer small but significant structural dissimilarities in the substrate-binding loops, allowing the differentiated catalytic properties between the two different tissue-type isozymes. Whereas the polymorphic sequence at the bisphosphatase-active pocket suggests a more suitable substrate binding, a similar extent of sequence differences at the kinase-active pocket confers a different mechanism of substrates bindings to the kinase-active pocket. It includes the ATP-sensitive unwinding of the switch helix alpha5, which is a characteristic ATP-dependent conformational change in the testis form. The sequence-dependent structural difference disallows the liver kinase to follow the ATP-switch mechanism. Altogether these suggest that the liver isoform has structural features more appropriate for an elevated bisphosphatase activity, compared with that of the testis form. The structural predisposition for bisphosphatase activity in the liver isozyme is consistent with the liver-unique glucose metabolic pathway, gluconeogenesis.  相似文献   

10.
11.
12.
A graphical method to reveal the so-called 'critical fragments' in schemes of biochemical systems is considered. These fragments produce multiple steady states or self-oscillations in systems. As an example, the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, regulated by glucagon through enzyme phosphorylation, is discussed. It is shown that this enzyme may act as a metabolic switching mechanism in discontinuous or oscillatory regimes, depending on the specific structure of its kinetic scheme. The boundaries of concentrational and parameter domains for these critical phenomena are also predicted.  相似文献   

13.
14.
Bovine brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was purified to homogeneity and characterized. This bifunctional enzyme is a homodimer with a subunit molecular weight of 120,000, which is twice that of all other known bifunctional enzyme isozymes. The kinase/bisphosphatase activity ratio was 3.0. The Km values for fructose 6-phosphate and ATP of the 6-phosphofructo-2-kinase were 27 and 55 microM, respectively. The Km for fructose 2,6-bisphosphate and the Ki for fructose 6-phosphate for the bisphosphatase were 70 and 20 microM, respectively. Physiologic concentrations of citrate had reciprocal effects on the enzyme's activities, i.e. inhibiting the kinase (Ki of 35 microM) and activating the bisphosphatase (Ka of 16 microM). Phosphorylation of the brain enzyme was catalyzed by the cyclic AMP-dependent protein kinase with a stoichiometry of 0.9 mol of phosphate/mol of subunit and at a rate similar to that seen with the liver isozyme. In contrast to the liver isozyme, the kinetic properties of the brain enzyme were unaffected by cyclic AMP-dependent protein kinase phosphorylation, and also was not a substrate for protein kinase C. The brain isozyme formed a labeled phosphoenzyme intermediate and cross-reacted with antibodies raised against the liver isozyme. However, the NH2-terminal amino acid sequence of a peptide generated by cyanogen bromide cleavage of the enzyme had no identity with any known bifunctional enzyme sequences. These results indicate that a novel isozyme, which is related to other 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes, is expressed specifically in neural tissues.  相似文献   

15.
A cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a Spinacia oleracea leaf library and used to express a recombinant enzyme in Escherichia coli and Spodoptera frugiperda cells. The insoluble protein expressed in E. coli was purified and used to raise antibodies. Western blot analysis of a protein extract from spinach leaf showed a single band of 90.8 kDa. Soluble protein was purified to homogeneity from S. frugiperda cells infected with recombinant baculovirus harboring the isolated cDNA. The soluble protein had a molecular mass of 320 kDa, estimated by gel filtration chromatography, and a subunit size of 90.8 kDa. The purified protein had activity of both 6-phosphofructo-2-kinase specific activity 10.4-15.9 nmol min(-1) x mg protein (-1) and fructose-2,6-bisphosphatase (specific activity 1.65-1.75 nmol x mol(-1) mg protein(-1). The 6-phosphofructo-2-kinase activity was activated by inorganic phosphate, and inhibited by 3-carbon phosphorylated metabolites and pyrophosphate. In the presence of phosphate, 3-phosphoglycerate was a mixed inhibitor with respect to both fructose 6-phosphate and ATP. Fructose-2,6-bisphosphatase activity was sensitive to product inhibition; inhibition by inorganic phosphate was uncompetitive, whereas inhibition by fructose 6-phosphate was mixed. These kinetic properties support the view that the level of fructose 2,6-bisphosphate in leaves is determined by the relative concentrations of hexose phosphates, three-carbon phosphate esters and inorganic phosphate in the cytosol through reciprocal modulation of 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities of the bifunctional enzyme.  相似文献   

16.
The complete amino acid sequence of 6-phospho-fructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was determined by direct analysis of the S-carboxamidomethyl protein. A complete set of nonoverlapping peptides was produced by cleavage with a combination of cyanogen bromide and specific proteolytic enzymes. The active enzyme is a dimer of two identical polypeptide chains composed of 470 amino acids each. The NH2-terminal amino acid residue of the polypeptide chain was shown to be N-acetylserine by fast atom bombardment mass spectrometry of the purified N-terminal tetradecapeptide isolated after cleavage of the intact S-carboxamidomethylated protein with lysyl endoproteinase (Achromobacter protease I). Alignment of the set of unique peptides was accomplished by the analysis of selected overlapping peptides generated by proteolytic cleavage of the intact protein and the larger purified cyanogen bromide peptides with trypsin, Staphylococcus aureus V8 protease, and lysyl endoproteinase. Four nonoverlapping peptides were aligned by comparison with the amino acid sequence predicted from a partial cDNA clone encoding amino acid positions 166-470 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Colosia, A.D., Lively, M., El-Maghrabi, M. R., and Pilkis, S. J. (1987) Biochem. Biophys. Res. Commun. 143, 1092-1098). The nucleotide sequence of the cDNA corroborated the peptide sequence determined by direct methods. A search of the Protein Identification Resource protein sequence database revealed that the overall amino acid sequence appears to be unique since no obviously homologous sequences were identified. However, a 100-residue segment of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (residues 250-349), including the active site histidine residue of the bisphosphatase domain, was found to be homologous to the active site regions of yeast phosphoglycerate mutase and human bisphosphoglycerate mutase.  相似文献   

17.
Rat liver fructose-2,6-bisphosphatase, which catalyzes its reaction via a phosphoenzyme intermediate, is evolutionarily related to the phosphoglycerate mutase enzyme family (Bazan, F., Fletterick, R., and Pilkis, S.J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). Arg-7 and Arg-59 of the yeast phosphoglycerate mutase have been postulated to be substrate-binding residues based on the x-ray crystal structure. The corresponding residues in rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, Arg-257 and Arg-307, were mutated to alanine. The Arg257Ala and Arg307Ala mutants and the wild-type enzyme were expressed in Escherichia coli and then purified to homogeneity. Both mutant enzymes had identical far and near UV circular dichroism spectra and 6-phosphofructo-2-kinase activities when compared with the wild-type enzyme. However, the Arg257Ala and Arg307Ala mutants had altered steady state fructose-2,6-bisphosphatase kinetic properties; the Km values for fructose-2,6-bisphosphate of the Arg257Ala and Arg307Ala mutants were increased by 12,500- and 760-fold, whereas the Ki values for inorganic phosphate were increased 7.4- and 147-fold, respectively, as compared with the wild-type values. However, the Ki values for the other product, fructose-6-phosphate, were unchanged for the mutant enzymes. Although both mutants exhibited parallel changes in kinetic parameters that reflect substrate/product binding, they had opposing effects on their respective maximal velocities; the maximal velocity of Arg257Ala was 11-fold higher, whereas that for Arg307Ala was 700-fold lower, than that of the wild-type enzyme. Pre-steady state kinetic studies demonstrated that the rate of phosphoenzyme formation for Arg307Ala was at least 4000-fold lower than that of the wild-type enzyme, whereas the rate for Arg257Ala was similar to the wild-type enzyme. Furthermore, consistent with the Vmax changes, the rate constant for phosphoenzyme breakdown for Arg257Ala was increased 9-fold, whereas that for Arg307Ala was decreased by a factor of 500-fold, as compared with the wild-type value. The results indicate that both Arg-257 and Arg-307 interact with the reactive C-2 phospho group of fructose 2,6-bisphosphate and that Arg-307 stabilizes this phospho group in the transition state during phosphoenzyme breakdown, whereas Arg-257 stabilizes the phospho group of the ground state phosphoenzyme intermediate.  相似文献   

18.
The sugar phosphate specificity of the active site of 6-phosphofructo-2-kinase and of the inhibitory site of fructose-2,6-bisphosphatase was investigated. The Michaelis constants and relative Vmax values of the sugar phosphates for the 6-phosphofructo-2-kinase were: D-fructose 6-phosphate, Km = 0.035 mM, Vmax = 1; L-sorbose 6-phosphate, Km = 0.175 mM, Vmax = 1.1; D-tagatose 6-phosphate, Km = 15 mM, Vmax = 0.15; and D-psicose 6-phosphate, Km = 7.4 mM, Vmax = 0.42. The enzyme did not catalyze the phosphorylation of 1-O-methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, 2,5-anhydro-D-mannitol 6-phosphate, D-ribose 5-phosphate, or D-arabinose 5-phosphate. These results indicate that the hydroxyl group at C-3 of the tetrahydrofuran ring must be cis to the beta-anomeric hydroxyl group and that the hydroxyl group at C-4 must be trans. The presence of a hydroxymethyl group at C-2 is required; however, the orientation of the phosphonoxymethyl group at C-5 has little effect on activity. Of all the sugar monophosphates tested, only 2,5-anhydro-D-mannitol 6-phosphate was an effective inhibitor of the kinase with a Ki = 95 microM. The sugar phosphate specificity for the inhibition of the fructose-2,6-bisphosphatase was similar to the substrate specificity for the kinase. The apparent I0.5 values for inhibition were: D-fructose 6-phosphate, 0.01 mM; L-sorbose 6-phosphate, 0.05 mM; D-psicose 6-phosphate, 1 mM; D-tagatose 6-phosphate, greater than 2 mM; 2,5-anhydro-D-mannitol 6-phosphate, 0.5 mM. 1-O-Methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, and D-arabinose 5-phosphate did not inhibit. Treatment of the enzyme with iodoacetamide decreased sugar phosphate affinity in the kinase reaction but had no effect on the sensitivity of fructose-2,6-bisphosphatase to sugar phosphate inhibition. The results suggest a high degree of homology between two separate sugar phosphate binding sites for the bifunctional enzyme.  相似文献   

19.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

20.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号