首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Magnotta M  Murata J  Chen J  De Luca V 《Phytochemistry》2006,67(16):1758-1764
The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source of the monoterpenoid indole alkaloids (MIAs), vinblastine and vincristine, key pharmaceutical compounds used to combat a number of different cancers. The present study uses high performance liquid chromatography for metabolic profiling of the MIAs extracted from seedlings and young leaves of 50 different flowering cultivars of C. roseus to show that, except for a single low vindoline cultivar (Vinca Mediterranean DP Orchid), they accumulate similar levels of MIAs. Further enzymatic studies with extracts from young leaves and from developing seedlings show that the low vindoline cultivar has a 10-fold lower tabersonine-16-hydroxylase activity than those of C. roseus cv. Little Delicata. It is concluded that rapid metabolic and more selective enzymatic profiling of Catharanthus mutants could be useful for the identification of a range of altered MIA biosynthesis lines.  相似文献   

3.
Microtubule interfering agents (MIAs) are anti-tumor drugs that inhibit microtubule dynamics, while kinesin spindle protein (KSP) inhibitors are substances that block the formation of the bipolar spindle during mitosis. All these compounds cause G2/M arrest and cell death. Using 2D-PAGE followed by Nano-LC-ESI-Q-ToF analysis, we found that MIAs such as vincristine (Oncovin) or paclitaxel (Taxol) and KSP inhibitors such as S-tritil-l-cysteine induce the phosphorylation of the nuclear protein p54(nrb) in HeLa cells. Furthermore, we demonstrate that cisplatin (Platinol), an anti-tumor drug that does not cause M arrest, does not induce this modification. We show that the G2/M arrest induced by MIAs is required for p54(nrb) phosphorylation. Finally, we demonstrate that CDK activity is required for MIA-induced phosphorylation of p54(nrb).  相似文献   

4.
《Journal of Proteomics》2008,71(6):592-600
Microtubule interfering agents (MIAs) are anti-tumor drugs that inhibit microtubule dynamics, while kinesin spindle protein (KSP) inhibitors are substances that block the formation of the bipolar spindle during mitosis. All these compounds cause G2/M arrest and cell death. Using 2D–PAGE followed by Nano-LC-ESI-Q-ToF analysis, we found that MIAs such as vincristine (Oncovin) or paclitaxel (Taxol) and KSP inhibitors such as S-tritil-l-cysteine induce the phosphorylation of the nuclear protein p54nrb in HeLa cells. Furthermore, we demonstrate that cisplatin (Platinol), an anti-tumor drug that does not cause M arrest, does not induce this modification. We show that the G2/M arrest induced by MIAs is required for p54nrb phosphorylation. Finally, we demonstrate that CDK activity is required for MIA-induced phosphorylation of p54nrb.  相似文献   

5.
6.
7.
Analyses of bunyavirus-infected cell extracts identified at least two virus-induced nonstructural polypeptides. With snowshoe hare (SSH), La Crosse (LAC), and six SSH-LAC reassortant viruses, it was shown that one of these nonstructural polypeptides (NSs, approximate molecular weight, 7.4 X 10(3)) is coded by the SSH small (S)-size viral RNA species. This nonstructural polypeptide was not detected (at least in the same relative abundancies) in LAC virus-infected cells or in cells infected with reassortants having LAC S RNA. For SSH virus, tryptic peptide analyses of either [3H]leucine- or [3H]arginine-labeled NSs indicated that it contains unique sequences not present in the SSH nucleocapsid (N) polypeptide (also coded by the S RNA; J. R. Gentsch and D. H. L. Bishop, J. Virol. 28:417-419, 1978). Analyses of SSH virus-infected cell extracts and extracts of cells infected with SSH-LAC reassortants having SSH medium (M)-size RNA species indicated that a nonstructural polypeptide (NSM; approximate molecular weight, 12 X 10(3)) is coded by the SSH M RNA species. In extracts of LAC virus-infected cells (or cells infected with SSH-LAC reassortants having LAC M RNA), a polypeptide with an electrophoretic mobility slightly faster than that of the SSH NSM polypeptide was observed (approximate molecular weight, 11 X 10(3)); it has been designated LAC NSM. The relationships of the NSM polypeptides to the other M RNA-coded polypeptides (G1 and G2; J. R. Gentsch and D. H. L. Bishop, J. Virol. 30;767-770, 1979) have not been determined. Two additional polypeptides present in both LAC- and SSH-infected cell extracts also appear to be virus induced (one with an approximate molecular weight of 10 X 10(3), p10; the other with an approximate molecular weight of 18 X 10(3), p18). Whether these polypeptides are virus coded has not been determined.  相似文献   

8.
We investigated the effects of novel microtubules interfering agents (MIAs) in primary cultures of rat hepatocytes. Cells were treated for 24 h with a known compound colchicine and newly synthesized derivatives myoseverin, tubulyzine, and E2GG. We examined the effects of MIAs on microtubules network integrity and on the polymerization capability of isolated tubulin. All tested MIAs inhibited microtubules assembly with the following IC(50) values: tubulyzine (4.4 + or - 0.9 micromol/l), myoseverin (7.0 + or - 0.8 micromol/l), E2GG (16 + or - 2 micromol/l), colchicine (2.0 + or - 0.4 micromol/l). The potency of MIAs to perturb microtubular network integrity (monitored by immune-histochemistry) increased in the order tubulyzine < myoseverin < E2GG < colchicine. We described recently deleterious effects of MIAs on the expression of drug metabolizing enzymes, including CYP1A1. Here we observed inhibitory effects of novel MIAs on dioxin-inducible expression of CYP1A1 mRNA in rat hepatocytes. We conclude that novel MIAs exert analogical biological response as classical MIAs such as colchicine or nocodazole. This further supports the hypothesis that tubulin is the primordial target of MIAs within the cell and that perturbation of microtubules dynamics and/or integrity triggers the biological effects described here.  相似文献   

9.
10.
Antibodies to the synthetic polypeptide (T,G)-A--L were raised in C57BL/10 and C3H.SW mice. For each strain, the anti-(T,G)-A--L antibodies from 10 animals were pooled, affinity purified on a (T,G)-A--L-Sepharose column, and used to immunize Lewis rats. The resulting rat antisera were adsorbed with insolubilized normal mouse globulin in order to remove anti-isotypic and anti-allotypic antibodies. The residual antibodies specifically inhibited the binding of (T,G)-A--L by anti-(T,G)-A--L as measured by a radioimmunoassay. The specificity of this inhibition was demonstrated as follows: 1) failure of the anti-(T,G)-A--L anti-idiotype to inhibit the binding of nuclease to anti-nuclease antibody of the same allotype; 2) failure of Lewis anti-[B10 anti-(T,G)-A--L] to inhibit C3H.SW anti-(T,G)-A--L and vice versa; 3) ability to absorb anti-C3H.SW anti-idiotypic activity on insolubilized C3H.SW anti-(T,G)-A--L but not on B10 anti-(T,G)-A--L. The same or cross-reactive idiotype(s) was present in the majority of individuals of each of these strains.  相似文献   

11.
Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ~3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome.  相似文献   

12.
Phospholipid-stimulated protein kinase in plants   总被引:8,自引:0,他引:8  
In membrane fractions from zucchini (Cucurbita pepo L.) hypocotyls, catalytic properties of a platelet-activating factor (PAF)-activated protein kinase were investigated. In the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, phosphorylation of a 55-kDa membrane polypeptide and, to a lesser extent, several others, including a 120-kDa polypeptide, was stimulated by PAF. The phosphorylation of the 55-kDa polypeptide was used for quantification of the PAF-stimulated protein kinase. Stimulation of protein phosphorylation by PAF increased in a concentration range from 10-200 micrograms/ml (= 19-380 microM) PAF up to 10-fold above the control. Addition of Ca2+ ions in the micromolar range in the presence and in the absence of PAF increased the phosphorylation of the 55- and the 120-kDa polypeptide. Other phospholipids and lipids tested including phorbol ester, diglyceride, mono- and triglyceride, and oleic acid were ineffective. The same lipid specificity was previously observed for the activation of ATP-dependent H+ transport in microsomes (Scherer, G.F.E., Martiny-Baron, G., and Stoffel, B. (1988) Planta 175, 241-253). Lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) were able to stimulate the phosphorylation of the same polypeptides as PAF and H+ transport but both to a lesser extent (PAF greater than LPC greater than LPE). In the presence of EGTA, PAF-stimulated phosphorylation of a 55- and a 57-kDa polypeptide was predominantly associated with vacuolar membranes and those of 42, 61, 63, and 120 kDa were predominantly associated with plasma membranes. Stimulation of ATP-dependent H+ transport by PAF was found in tonoplast vesicles whereas plasma membrane vesicles had only little transport activity and, therefore, an effect of PAF on plasma membrane H+ transport could not be measured. Stimulation of ATP hydrolysis by PAF was observed both in tonoplast- and plasma membrane-containing fractions.  相似文献   

13.
14.
15.
H Gu  S H Park  G H Park  I K Lim  H W Lee  W K Paik  S Kim 《Life sciences》1999,65(8):737-745
Enzymatic methylation of endogenous proteins in several cancer cell lines was investigated to understand a possible relationship between protein-arginine methylation and cellular proliferation. Cytosolic extracts prepared from several cancer cells (HeLa, HCT-48, A549, and HepG2) and incubated with S-adenosyl-L-[methyl-3H]methionine revealed an intensely [methyl-3H]-labeled 20-kDa polypeptide. On the other hand, cytosolic extracts prepared from normal colon cells did not show any methylation of the 20-kDa protein under identical conditions. To identify nature of the 20-kDa polypeptide, purified histones were methylated with HCT-48 cytosolic extracts and analyzed by SDS-PAGE. However, none of the histones comigrated with the methylated 20-kDa polypeptide, indicating that it is unlikely to be any of the histone subclasses. The [methyl-3H]group in the 20-kDa polypeptide was stable at pH 10-11 (37 degrees C for 30 min) and methylation was not stimulated by GTPgammaS (4 mM), thus the reaction is neither carboxyl methylesterification on isoaspartyl residues, nor on C-terminal farnesylated cysteine. The present study together with the previous identification of N(G)-methylated arginine residues in the HCT-48 cytosol fraction suggests that this novel endogenous 20-kDa arginine-methylation is a cellular proliferation-related posttranslational modification reaction.  相似文献   

16.
The amphibian photoreceptor rod outer segment contains a guanine nucleotide-binding complex which consists of a 39,000-dalton polypeptide that binds guanine nucleotides (G protein), a 36,000-dalton polypeptide (H protein), and an approximately 6,500-dalton polypeptide. Sensitivity to trypsin proteolysis was utilized as a probe of structure-function relationships for these polypeptides. Digestion of the H protein generated fragments of 26,000 and 15,000 daltons whose proteolytic susceptibility was not altered by guanosine triphosphates, light, or membranes. The approximately 6,500-dalton polypeptide was not trypsin sensitive. When the G protein was eluted from illuminated membranes by GTP, trypsin proteolysis cleaved a terminal 1,000-dalton fragment (G1) to yield a 38,000-dalton fragment (G38). With increased digestion time, a 6,000-dalton fragment (G6) was removed from G38 to yield a 32,000-dalton fragment (G32). G32 was subsequently digested to fragments of 23,000 and 12,000 daltons. However, when the G protein was eluted from illuminated membranes by hydrolysis-resistant analogues of GTP, G32 was protected from further digestion. This is consistent with a GTP-induced conformational change in the G protein which is altered by GTP hydrolysis. Proteolysis of the G protein after covalent labeling with a photoaffinity analogue of GTP demonstrated that the analogue is bound to first G38 and then G32, indicating the GTP-binding site is associated with G32. Fragment G6 was cleaved when the G protein was soluble or bound to unilluminated membranes. However, when bound to illuminated membranes, fragments were generated reflecting the loss of 7,500, 9,000, or 11,000 daltons from the G protein. This light-induced alteration in proteolytic susceptibility indicates there is a light-induced conformational change in the G protein. Fragment G1 was not removed from the G protein when it was membrane bound, suggesting G1 is involved in binding to a membrane structure. These data suggest that the light-induced binding of the G protein to illuminated membranes and the reversal of this binding by GTP are mediated through conformational changes in the G protein and that three conformations exist: 1) a basal, inactive conformation; 2) a primed conformation induced by binding to photolyzed rhodopsin, with a high affinity for GTP; and 3) an active conformation, induced by binding of GTP, which activates the catalytic complex of light-activated phosphodiesterase.  相似文献   

17.
F Bex  H Karoui  L Rokeach  P Drze  L Garcia    M Couturier 《The EMBO journal》1983,2(11):1853-1861
The elements which ensure the maintenance of the F plasmid are located in its f5 EcoRI restriction fragment. This f5 fragment constitutes a mini-F plasmid showing the same stability and copy number control as the entire F plasmid. The proteins expressed in minicells by wild-type or mutated f5 fragments were analysed by pH gradient two-dimensional electrophoresis. We identified seven f5-encoded polypeptides and located their genes on the F map. Among them, H1, an acidic polypeptide of mol. wt. 10.5 K, had not been detected before. It is in fact the most abundant f5-encoded polypeptide identified so far. In addition, we showed that both 10.5-K and 12-K protein bands detected by SDS-polyacrylamide gel electrophoresis are, respectively, composed of two polypeptides, H1 and H2, G1 and G2, of different isoelectric points. Polypeptides H2 and G2, respectively, share common coding sequences with polypeptides H1 and G1. Their possible biological significance is discussed. The sequences coding for polypeptides H1/H2 and G1/G2 are clustered in a 800-bp long region located between the two mini-F origin sites and are proposed to be organized as an operon. The results reported in the accompanying paper point out the importance of polypeptides G1/G2 and H1/H2 in the relationship between the F plasmid and its host.  相似文献   

18.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

19.
Mouse myeloma mutants isolated from cell line 45.6 (gamma 2b) producing structurally altered immunoglobulin heavy (H) chains have been characterized. The mutant 10-1 synthesizes an H chain of 47 000 daltons containing a CH1 deletion; two mutants, G251 and I17, derived from 10-1 synthesize H chains of 40 000 and 35 000 daltons, respectively. The messenger ribonucleic acids (mRNAs) in these mutants have been shown to be smaller in molecular weight than mRNAs produced in 45.6 cells and lack a portion, but not all, of the CH1 domain. The H chains of G251 and I17 no longer express IgG subclass-specific determinants, are not secreted, and are structurally altered in the carboxyl-terminal portion of the molecule. In vitro the mRNAs of the mutants code for the synthesis of a polypeptide precursor characteristic of secreted proteins; the shortened proteins are apparently glycosylated intracellularly. Somatic cell hybrids between a structurally altered nonsecretor and a drug-marked wild-type myeloma cell secret only the wild-type protein. Reversion to secretion for G251 or I17 is accompanied by a change in the amino acid composition of the H chain such that gamma 2a subclass-specific determinants are expressed. Therefore, the primary structure of the H chain is an important factor in determining secretion. The gamma 2a-secreted chains from G251 and I17 fall into two classes: (1) those synthesizing proteins of approximately 47 000 daltons producing H-chain mRNAs of approximately 1.66 kilobases that are deleted for a portion, but not all, of CH1; (2) those synthesizing gamma2a proteins of approximately 55 000 daltons that are encoded in mRNAs of apparently wild-type size and that have regained CH1 sequences. The molecular explanations for the production of these alterations is discussed.  相似文献   

20.
Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15-60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the distal colorectum with the pelvic nerve attached was removed for single-fiber electrophysiological recordings. Colorectal afferent endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. Intracolonic zymosan produced persistent colorectal hypersensitivity (>24 days) associated with brief colorectal inflammation. Pelvic nerve muscular-mucosal but not muscular mechanosensitive afferents recorded from mice with colorectal hypersensitivity exhibited persistent sensitization. In addition, the proportion of MIAs (relative to control) was significantly reduced from 27% to 13%, whereas the proportion of serosal afferents was significantly increased from 34% to 53%, suggesting that MIAs acquired mechanosensitivity. PGP9.5 immunostaining revealed no significant loss of colorectal nerve fiber density, suggesting that the reduction in MIAs is not due to peripheral fiber loss after intracolonic zymosan. These results indicate that colorectal MIAs and sensitized muscular-mucosal afferents that respond to stretch contribute significantly to the afferent input that sustains hypersensitivity to CRD, suggesting that targeted management of colorectal afferent input could significantly reduce patients' complaints of pain and hypersensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号