首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in enamel thickness and structure in East African hominids   总被引:2,自引:0,他引:2  
Tooth fragments are an appreciable but neglected proportion of fossil hominid specimens. The present study on 47 naturally fractured enamel surfaces of premolar and molar teeth of Plio-Pleistocene East African hominids measured enamel thickness, slope of incremental lines (striae of Retzius), and the morphology of Hunter Schreger bands (HSBs). Specimens allocated to three categories--"robust" australopithecines (EAFROB), "early Homo" (EAFHOM), and "unknown"--were photographed in ethanol with polarised light. Enamel thickness was measured on the occlusal (OT), cuspal (CT), and lateral (LT) aspects. The angle of intersection of striae of Retzius (D) with the enamel-dentine junction (EDJ) was recorded, together with the degree of curvature and width of Hunter-Schreger bands (HSB). Absolute measurements of enamel thickness were scaled by using two allometry correction factors. Absolute thicknesses of all enamel measurements were significantly greater in the EAFROB (OT 3.1 mm; CT 3.3 mm; LT 2.4 mm) compared with EAFHOM (OT 1.4 mm; CT 1.6 mm; LT 1.6 mm) categories. Correction for size reduces the mean difference between the two taxa, but CT and OT thickness remain significantly different (P less than 0.05). HSBs in EAFROB were relatively straight and narrower (means = 52.8 micron) than in EAFHOM, which are more curved and wider (means = 62.0 micron), suggesting greater enamel prism decussation in early Homo. The slope of striae was less in EAFROB permanent molars (means = 23 degrees) compared with EAFHOM (means = 31 degrees), indicating faster rates of coverage during crown formation in "robust" australopithecines. We conclude that the study of fractured enamel surfaces can contribute to our understanding of the systematic relationships and patterns of enamel growth of early hominids.  相似文献   

2.
Thick molar enamel is among the few diagnostic characters of hominins which are measurable in fossil specimens. Despite a long history of study and characterization of Paranthropus molars as relatively 'hyper-thick', only a few tooth fragments and controlled planes of section (designed to be proxies of whole-crown thickness) have been measured. Here, we measure molar enamel thickness in Australopithecus africanus and Paranthropus robustus using accurate microtomographic methods, recording the whole-crown distribution of enamel. Both taxa have relatively thick enamel, but are thinner than previously characterized based on two-dimensional measurements. Three-dimensional measurements show that P. robustus enamel is not hyper-thick, and A. africanus enamel is relatively thinner than that of recent humans. Interspecific differences in the whole-crown distribution of enamel thickness influence cross-sectional measurements such that enamel thickness is exaggerated in two-dimensional sections of A. africanus and P. robustus molars. As such, two-dimensional enamel thickness measurements in australopiths are not reliable proxies for the three-dimensional data they are meant to represent. The three-dimensional distribution of enamel thickness shows different patterns among species, and is more useful for the interpretation of functional adaptations than single summary measures of enamel thickness.  相似文献   

3.
This paper is one in a series which explores the possibility of using the non-destructive CT technique to identify patterns in tooth enamel distribution and structure of hominid molars from Plio-Pleistocene sites in South Africa, notably Swartkrans, Sterkfontein, and Kromdraai. Whereas previous investigators have emphasised gross differences in absolute and relative or average enamel thickness between hominid taxa, the present study highlights differences in enamel thickness over functionally significant regions of the crown. Differences in the distribution of enamel in A. robustus, A. africanus, and Homo sp. are identified through the use of bivariate and multivariate analyses, and are interpreted in terms of dietary regimes.  相似文献   

4.
Compact bone distribution and biomechanics of early hominid mandibles.   总被引:1,自引:0,他引:1  
This investigation explores the effects of compact bone distribution on the biomechanical properties of the postcanine mandibular corpus of the fossil hominid taxa Australopithecus africanus and Paranthropus robustus. The mandibles of extant great apes, modern humans, and the fossil hominids are examined by computed tomography (CT), and compact bone contours are used to calculate cross-sectional biomechanical properties (cortical area, second moments of area, and Bredt's formula for torsional strength). The relative amount of compact bone is comparable in the modern and fossil mandibles, but the mechanical properties of A. africanus and P. robustus jaws are distinct in terms of the ratio of minimum to maximum second moments of area. This difference most likely represents a structural response to elevated torsional moments in the fossil hominids. Although the relative amount of compact bone in cross-section does not differ significantly between taxa by statistical criteria, A. africanus utilizes less cortical bone than P. robustus in the same manner in which Pongo is separated from the condition in other extant large-bodied hominoids. It has been suggested that the phenomenon of mandibular "robusticity" (expressed as an index of corpus breadth/corpus height) may be an effect of postcanine megadontia and/or reduced canine size in the australopithecines. Results presented here, however, indicate that it is unlikely that either factor adequately accounts for mandibular size and shape variation in early hominids.  相似文献   

5.
运用扫描电子显微镜,对4枚禄丰古猿牙齿(恒齿)的釉质结构进行了观察研究。发现:禄丰古猿牙齿釉质表面有明显的釉面横纹结构;釉面横纹的密度向牙颈方向逐渐增大;观察记数了4枚牙齿的釉面横纹数,进而推算出牙冠的形成时间和年龄。与化石人科成员、现代人及现生大猿比较,禄丰古猿牙冠发育模式及时间,与南方古猿纤细种比较接近或相似,明显长于南方古猿粗壮种,有别于现生大猿。  相似文献   

6.
The general factors underlying the formation of growth layers and incremental markings in hard tissues are reviewed with particular reference to fossil hominid tooth enamel. The experimental and circumstantial evidence that point to a slowing of enamel matrix secretion in a daily (circadian) and near weekly (circaseptan) mode during tooth formation is also reviewed. Data from previous studies in which the number of daily increments between adjacent striae of Retzius have been recorded in primates are reviewed and new data are presented for this repeat interval in fossil hominids. The factors likely to influence the number of striae of Retzius beneath the cuspal regions of anterior teeth are outlined and the limitations of employing surface incremental features to obtain estimates for age at death of an individual are also discussed. It is concluded that there is good evidence to support the hypothesis that perikymata are near weekly incremental phenomena with a likely periodicity of 7,8 or 9 days in fossil hominids. It can also be concluded that at present, better estimates for the age at death of an individual during early phases of the growth period can be obtained from studies of perikymata than by any other non-destructive technique.  相似文献   

7.
A ground section was prepared from a lower right M3 attributed to Gigantopithecus blacki as close as possible to axial plane of the mesial cusps. Daily cross striations were imaged, measured and counted in each cusp using polarised light microscopy. Long-period striae of Retzius were counted in the lateral enamel and their periodicity determined from counts and measurements of daily cross striations between adjacent striae. Cross striation spacings in the cusps were between 3.8 microm at the enamel dentine junction and 6 microm close to the enamel surface. Cuspal enamel formation times were long (800 days in the protoconid and 620 days in the metaconid). Linear enamel thickness was as much as 3.75 mm in the protoconid. There were 63 and 61 long-period striae of Retzius in the mesial aspects of the lateral enamel and the periodicity was 11 days. Lateral enamel formation took 1493 and 1291 days and when summed with cuspal enamel formation times totalled 4 years in the protoconid and 3.5 in the metaconid. Relative enamel thickness was 23, calculated through the mesial cusps. This falls short of that in the so-called 'thick hyper-thick' enamel described in 'robust' australopithecines to which Gigantopithecus blacki has previously been compared in both its dental and mandibular morphology. With respect to enamel thickness, therefore, Gigantopithecus blacki falls squarely among an increasingly large number of Miocene hominoids that can all be described as having 'thick enamel'.  相似文献   

8.
Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.  相似文献   

9.
Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.  相似文献   

10.
Most of what we know about the timing of human enamel formation comes from radiographic studies on children of known age. Here, we present new longitudinal data derived from a histological analysis of tooth enamel. Two samples, one from southern Africa and one from northern Europe, contained all anterior and molar tooth types. Two further samples contained only one tooth type: canines from a medieval Danish sample and third molars from a modern North American sample. Data were collected on 326 molars and 352 anterior teeth. Each tooth was sectioned and prepared for polarized light microscopy. We used daily enamel cross striations to determine cuspal enamel formation time, recorded the periodicity of long-period striae in the lateral enamel, and used this value to calculate enamel formation times for each decile of crown length. We present data that reveal some of the processes whereby differences in enamel formation times arise between our samples. Mean cuspal enamel formation times were similar in southern African and northern European anterior teeth, but differed in certain molar cusps. All the southern African anterior teeth completed enamel formation earlier. The greatest difference in mean chronological age at enamel completion was 5.2 vs. 6.2 years of age in lower canines. However, enamel completion times in the molar teeth showed few differences between the samples, with mean times for the longest forming cusps all falling between 3.0 years and 3.45 years. Our data suggest fewer differences between samples and smaller ranges of variation than in many radiographic studies and present a more realistic picture of worldwide variation in enamel formation times.  相似文献   

11.
We documented the spacing and distribution of perikymata on the buccal enamel surface of fossil hominin anterior teeth with reference to a sample of modern human and modern great ape teeth. A sample of 27 anterior teeth attributed to Australopithecus (5 to A. afarensis, 22 to A. africanus) and of 33 attributed to Paranthropus (6 to P. boisei, and 27 to P. robustus) were replicated and sputter-coated with gold to enable reflected light microscopy of their surface topography. Anterior teeth were then divided into 10 equal divisions of buccal crown height. The total perikymata count in each division of crown height was recorded using a binocular microscope fitted with a vernier micrometer eyepiece. Then the mean number of perikymata per millimeter was calculated for each division. Similar comparative data for a modern sample of 115 unworn human anterior teeth and 30 African great ape anterior teeth were collected from ground sections. Perikymata counts in each taxon (together with either known or presumed periodicities of perikymata) were then used to estimate enamel formation times in each division of crown height, for all anterior tooth types combined. The distributions of these estimates of time taken to form each division of crown height follow the same trends as the actual perikymata counts and differ between taxa in the same basic way. The distinction between modern African great apes and fossil hominins is particularly clear. Finally, we calculated crown formation times for each anterior tooth type by summing cuspal and lateral enamel formation times. Estimates of average crown formation times in australopiths are shorter than those calculated for both modern human and African great ape anterior teeth. The data presented here provide a better basis for exploring differences in perikymata spacing and distribution among fossil hominins, and provide the first opportunity to describe four specimens attributed to Homo in this context. Preliminary data indicate that differences may exist among the species attributed to early Homo, especially between Homo ergaster and Homo rudolfensis on the one hand, and Homo habilis sensu strico on the other.  相似文献   

12.
13.
The discovery of Australopithecus afarensis has led to new interpretations of hominid phylogeny, some of which reject A. africanus as an ancestor of Homo. Analysis of buccolingual tooth crown dimensions in australopithecines and Homo species by Johanson and White (Science 202:321-330, 1979) revealed that the South African gracile australopithecines are intermediate in size between Laetoli/hadar hominids and South African robust hominids. Homo, on the other hand, displays dimensions similar to those of A. afarensis and smaller than those of other australopithecines. These authors conclude, therefore, that A. africanus is derived in the direction of A. robustus and is not an ancestor of the Homo clade. However, there is a considerable time gap (ca. 800,000 years) between the Laetoli/Hadar specimens and the earliest Homo specimens; "gracile" hominids from Omo fit into this chronological gap and are from the same geographic area. Because the early specimens at Omo have been designated A. afarensis and the later specimens classified as Homo habilis, Omo offers a unique opportunity to test hypotheses concerning hominid evolution, especially regarding the phylogenetic status of A. africanus. Comparisons of mean cheek teeth breadths disclosed the significant (P less than or equal to 0.05) differences between the Omo sample and the Laetoli/Hadar fossils (P4, M2, and M3), the Homo fossils (P3, P4, M1, M2, and M1), and A. africanus (M3). Of the several possible interpretations of these data, it appears that the high degree of similarity between the Omo sample and the South African gracile australopithecine material warrants considering the two as geographical variants of A. africanus. The geographic, chronologic, and metric attributes of the Omo sample argue for its lineal affinity with A. afarensis and Homo. In conclusion, a consideration of hominid postcanine dental metrics provides no basis for removing A. africanus from the ancestry of the Homo lineage.  相似文献   

14.
G. Suwa 《Human Evolution》1996,11(3-4):269-282
The early hominid dental remains from the Omo succession represent a fragmentary but important source of information regarding hominid evolution during the 2 to 3 myr time period. As an initial step toward the evaluation of taxonomic affinities and evolutionary significance, the present study attempts serial allocations of 21 isolated mandibular molars from the Shungura and Usno Formations. A comparative sample consisting of 250 mandibular molars ofA.afarensis, A.africanus, A.robustus, A.boisei and earlyHomo was used to compile the baseline data for allocating the isolated Omo molars to serial positions. The methods employed in the present study include morphometric analyses of 5 cusp areas, 8 linear variables reflecting crown shape, and 4 measurements of fissure pattern. It was found that by combining morphological observations with both “restricted” and “non-restricted” applications of discriminant function analyses (sensu Albrecht, 1992), sufficiently reliable serial allocations could be attained.  相似文献   

15.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

16.
The Plio-Pleistocene site of Kromdraai, South Africa, is well known for the recovery of the holotype of Paranthropus robustus, one of nine individual hominids recovered from this site to date. Among the Kromdraai sample, the specimen KB 5223 comprises several isolated deciduous and permanent lower teeth assigned to Paranthropus, the only recognized genus at this site. However, a more recent analysis of this specimen suggested that it should be classified as Homo. The lower right first permanent molar of KB 5223 had been previously sectioned along the tips of the mesial cusps, exposing its enamel microstructure. Previous studies had indicated differences between Homo and Paranthropus at the microstructural level. A portable confocal scanning microscope was used to describe details of the enamel microstructure of the M1 and I1 of this specimen. Angles formed between the striae of Retzius and the enamel dentine junction (EDJ), daily secretion rates in cuspal enamel of the protoconid and metaconid and crown formation time of the RM1 are provided. The number of perikymata on the right I1 was counted. Results indicate that some features recorded in the KB 5223 molar differ from those of Paranthropus. However, the number of perikymata on the I1 is lower than values so far reported for early Homo but similar to Paranthropus. Crown formation time of KB 5223 M1 was markedly lower than mean values of M1 in H. sapiens, but similar to other early hominids. Daily secretion rates in the cuspal enamel of KB 5223 M1 were higher than in modern humans.  相似文献   

17.
18.
Physiological stress, such as malnutrition or illness, can disrupt normal enamel growth, resulting in linear enamel hypoplasias (LEHs). Although ecological factors may contribute to LEH expression, other factors, such as surface abrasion and enamel growth variables, are also likely to be involved. Attention to these other factors is necessary before we can begin to understand what LEH might signify in terms of ecological sources of physiological stress in non-human primates. This study focuses on assessing the contribution of these other factors to variation in LEH expression within and across great ape taxa. Here, we present LEH data from unabraded crown regions in samples of seven great ape species. We analyze these data with respect to lateral enamel formation time and the angles that striae of Retzius make with the enamel surface, as these variables are expected to affect variation in LEH expression. We find that although the duration of enamel formation is associated with sex differences in LEH expression, it is not clearly related to taxonomic variation in LEH expression, and does not explain the low frequency of LEH in mountain gorillas found in this and a previous study. Our data on striae of Retzius angles suggest that these influence LEH expression along the tooth crown and may contribute to the consistently high frequencies of LEH seen in Pongo in this and previous studies. We suggest that future work aimed at understanding species variation in these angles is crucial to evaluating taxonomic patterns of LEH expression in great apes.  相似文献   

19.
A molar tooth fragment from the Plio-Pleistocene Barranco León site 5 at Orce is shown to belong toHomo by analyses of its enamel in terms of the arrangement of the striae of Retzius and Hunter-Shreger bands, presence of perikymata, and of the thickness of the enamel, when compared with teeth of similarsized mammals of other taxa.  相似文献   

20.
It has been suggested that patterns of craniodental variation in living hominids (Gorilla, Homo, Pan, and Pongo) may be useful for evaluating variation in fossil hominid assemblages. Using this approach, a fossil sample exhibiting a pattern of variation that deviates from one shared among living taxa would be regarded as taxonomically heterogeneous. Here we examine patterns of tooth crown size and shape variation in great apes and humans to determine 1) if these taxa share a pattern of dental variation, and 2) if such a pattern can reliably discriminate between samples that contain single species and those that contain multiple species. We use parametric and nonparametric correlation methods to establish the degree of pattern similarity among taxa, and randomization tests to assess their statistical significance. The results of this study show that extant hominids do not share a pattern of dental size variation, and thus these taxa cannot be used to generate expectations for patterns of size variation in fossil hominid species. The hominines (Gorilla, Homo, and Pan) do share a pattern of shape variation in the mandibular dentition; however, Pongo is distinct, and thus it is unclear which, if either, pattern should be expected in fossil hominids. Moreover, in this case, most combined-species samples exhibit patterns of shape variation that are similar to those for single hominine species samples. Thus, although a common pattern of shape variation is present in the mandibular dentition, it is not useful for recognizing taxonomically mixed paleontological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号