首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed and muscarinic cholinergic agonists (acetylcholine, carbamylcholine, methacholine, oxotremorine, and pilocarpine) accelerated in a dose-dependent manner the progesterone-induced maturation of Xenopus laevis oocytes. None of these agonists induced oocyte maturation in the absence of progesterone. The accelerating effect of cholinergic agonists was blocked in a dose-dependent manner by specific muscarinic antagonists (atropine and scopolamine) but not by specific nicotinic antagonists (d-tubocurarine and hexamethonium). The specific nicotinic agonist, dimethylphenylpiperazine, alone induced maturation in the absence of progesterone. The optimal promoting effect of acetylcholine was observed when oocytes were exposed to acetylcholine for 30 min, 5 min after the addition of progesterone, and was markedly better than when oocytes were exposed to acetylcholine throughout their incubation with progesterone. The effect of acetylcholine was observed in both follicle-enclosed and in defolliculated oocytes, indicating that follicular cells were not the target of the cholinergic drugs.  相似文献   

2.
We have measured the levels of cyclin mRNAs and polypeptides during oogenesis, progesterone-induced oocyte maturation, and immediately after egg activation in the frog, Xenopus laevis. The mRNA for each cyclin is present at a constant level of approximately 5 x 10(7) molecules per oocyte from the earliest stages of oogenesis until after fertilization. The levels of polypeptides show more complex patterns of accumulation. The B-type cyclins are first detectable in stage IV and V oocytes. Cyclin B2 polypeptide is present at approximately 2 x 10(9) molecules (150 pg) per oocyte by stage VI. The amount increases after progesterone treatment, but returns to its previous level after GVBD and undergoes no further change until it is destroyed at fertilization. Cyclin B1 is present at 4 x 10(8) molecules per oocyte in stage VI oocytes, and rises steadily during maturation, ultimately reaching similar levels to cyclin B2 in unfertilized eggs. Unlike the B-type cyclins, cyclin A is barely detectable in stage VI oocytes, and only starts to be made in significant amounts after oocytes are exposed to progesterone. A portion of all the cyclins are destroyed after germinal vesicle breakdown (GVBD), and cyclins B1 and B2 also experience posttranslational modifications during oocyte maturation. Progesterone strongly stimulates both cyclin and p34cdc2 synthesis in these oocytes, but whereas cyclin synthesis continues in eggs and after fertilization, synthesis of p34cdc2 declines strongly after GVBD. The significance of these results is discussed in terms of the activation and inactivation of maturation-promoting factor.  相似文献   

3.
The rate of oxygen consumption increased in maturing Xenopus oocytes within 2 hr after progesterone addition, well before GVBD. This suggested an early requirement for energy metabolism during maturation, similar to the situation in sea urchin eggs during fertilization. Yet, the absence of similar increases in glucose-6-phosphate levels, glucose-6-phosphate dehydrogenase activity, glucose conversion to CO2, and the conversion of NAD(H) to NADP(H), indicated that carbohydrate metabolism was not being stimulated in Xenopus oocytes during maturation. The oxidation of other energy yielding substrates is discussed which might account for the finding that, within 5 min of progesterone addition, both reduced forms of the pyridine nucleotides increased 20% over control levels. This was later followed by a drop in NADH levels and a rise in NAD relative to controls. The significance of these changes in pyridine nucleotide levels and their relationship to a number of maturation events are discussed.  相似文献   

4.
Electrical Properties of Toad Oocytes During Maturation and Activation   总被引:2,自引:2,他引:0  
The full-grown oocytes of the toad Bufo bufo japonicus , whether in follicular layer or not, had a membrane potential of about -50 mV in De Boer's solution (DB), but underwent a deep hyper-polarization of up to -90 mV when pretreated with Ca, Mg-free EDTA-solution. Regardless of the magnitude of their resting potentials, the defolliculated oocytes exposed to progesterone underwent a gradual depolarization before the germinal vesicle breakdown and retained membrane potential at a level of -10 mV until 18 hr post hormone treatment (PHT), the stage of the second meiotic metaphase. A positive-going activation potential of a magnitude of 70 mV was recorded in the oocytes when pricked at 18 hr PHT as well as in uterine eggs 3–5 min after insemination. A low magnitude of activation potential in response to pricking was recorded in 63% of the oocytes at 13 hr PHT, and premature oocytes exhibiting the activation potential always underwent cortical granule breakdown (CGBD) and perivitelline space formatión. Oocytes where the germinal vesicle had been removed before the hormone treatment exhibited an activation potential and underwent CGBD in response to pricking at 18 hr PHT, whereas those pulse-treated with cycloheximide (10 μg/ml) during the 8–11 hr PHT exhibited neither of these cortical responses. These results indicate that the syntheses of proteins independent of germinal vesicle taking place at 9–11 hr PHT enable the oocytes to undergo cortical responses.  相似文献   

5.
6.
Induction of maturation in small Xenopus laevis oocytes   总被引:1,自引:0,他引:1  
The competence of Xenopus laevis oocytes in various stages of growth to respond to progesterone treatment was investigated. Full-grown (stage 6) oocytes undergo nuclear membrane dissolution and resume meiosis in response to progesterone exposure, while smaller oocytes (stages 3-5; less than 1100 micron in diameter) do not. The defect which prevents 750- to 1050-micron oocytes from responding to progesterone can be overcome by microinjecting cytoplasm withdrawn from a stage 6 oocyte. Germinal vesicle breakdown in these small oocytes occurs on a timetable similar to that of stage 6 oocytes exposed to progesterone and is accompanied by a twofold increase in protein synthesis as well as the activation of MPF. The results argue that a cytoplasmic factor(s) which probably first appears at late stage 5 is required for progesterone responsiveness. The identity and role of the factor(s) in the development of maturation competence and the regulation of maternal mRNA translation are discussed.  相似文献   

7.
The germinal vesicle (GV) was removed from toad oocytes at various times after treatment with progesterone, and enucleated eggs were inseminated under conditions that ensured fertilization of nucleated control eggs. The eggs enucleated before the initiation of GV break-down did not show genuine cleavage. Cytological examinations revealed, however, that spermatozoa enter the eggs enucleated even before the hormone treatment, without subsequent formation of pronuclei or DNA synthesis. The same lack of response was observed when several detergent-pretreated sperm were injected into enucleated eggs. When GV material was injected back into enucleated oocytes, the injected spermatozoa underwent transformation and DNA synthesis, although in variable degrees, in the egg cytoplasm. It is concluded that the egg becomes fertilizable independently of the GV during the hormone-induced maturation process. After entering the egg, however, spermatozoa require GV material for their participation in the developmental process.  相似文献   

8.
In mammalian cells, p70(S6K) plays a key role in translational control of cell proliferation in response to growth factors. Because of the reliance on translational control in early vertebrate development, we cloned a Xenopus homolog of p70(S6K) and investigated the activity profile of p70(S6K) during Xenopus oocyte maturation and early embryogenesis. p70(S6K) activity is high in resting oocytes and decreases to background levels upon stimulation of maturation with progesterone. During embryonic development, three peaks of activity were observed: immediately after fertilization, shortly before the midblastula transition, and during gastrulation. Rapamycin, an inhibitor of p70(S6K) activation, caused oocytes to undergo germinal vesicle breakdown earlier than control oocytes, and sensitivity to progesterone was increased. Injection of a rapamycin-insensitive, constitutively active mutant of p70(S6K) reversed the effects of rapamycin. However, increases in S6 phosphorylation were not significantly affected by rapamycin during maturation. mos mRNA, which does not contain a 5'-terminal oligopyrimidine tract (5'-TOP), was translated earlier, and a larger amount of Mos protein was produced in rapamycin-treated oocytes. In fertilized eggs rapamycin treatment increased the translation of the Cdc25A phosphatase, which lacks a 5'-TOP. Translation assays in vivo using both DNA and RNA reporter constructs with the 5'-TOP from elongation factor 2 showed decreased translational activity with rapamycin, whereas constructs without a 5'-TOP or with an internal ribosome entry site were translated more efficiently upon rapamycin treatment. These results suggest that changes in p70(S6K) activity during oocyte maturation and early embryogenesis selectively alter the translational capacity available for mRNAs lacking a 5'-TOP region.  相似文献   

9.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

10.
Full-grown stage VI Xenopus laevis oocytes (1,200 to 1,300 micron) respond to progesterone stimulation by undergoing a series of physiological and morphological changes that are referred to as meiotic maturation. Oocytes in earlier stages of oogenesis (I through V) do not undergo these changes and remain in prophase arrest when exposed to this steroid. We have found that oocytes ranging from 850 micron (stage IV) to 1,000 micron (stage V) are capable of responding to progesterone under the appropriate conditions. Oocytes greater than or equal to 850 micron in diameter underwent germinal vesicle breakdown (GVBD) after 10-12 hr of exposure to progesterone when ouabain was added to the medium at a concentration greater than 2.5 X 10(-6) M. Under this culture condition, progesterone was now able to induce a 0.3- to 0.4-unit increase in the intracellular pH of stage IV-V oocytes, a 4- to 5-fold increase in 40s ribosomal protein S-6 phosphorylation, and a 2.3-fold increase in their rate of protein synthesis. All of these physiological changes are characteristic of full-grown stage VI oocytes undergoing meiotic maturation. In addition, we have found that oocytes greater than or equal to 750 micron are capable of amplifying maturation promoting factor (MPF) in their cytoplasm leading to GVBD. Therefore, stage IV-V Xenopus oocytes have the potential for undergoing meiotic maturation, but they are blocked at a point in prophase that appears to be alleviated by the combination of progesterone and ouabain.  相似文献   

11.
Characteristic changes in the patterns of protein phosphorylation occur during meiotic maturation of mouse oocytes from the time subsequent to germinal vesicle breakdown, through metaphase II, and following fertilization. These changes occur during both in vitro or in vivo maturation or fertilization. Three major classes of changes in total phosphoprotein synthesis are observed. In the first class, protein phosphorylations increase from the germinal vesicle stage until just after germinal vesicle breakdown and then decrease during progression to metaphase II and after fertilization. The second class is characterized by decreases in protein phosphorylation during maturation with subsequent increases in phosphorylation of these proteins after fertilization. The third class is characterized by protein phosphorylations that remain relatively constant during maturation but increase after fertilization; phosphotyrosine phosphoproteins comprise the major species. The radiolabeled protein and phosphoprotein composition of isolated germinal vesicles was also examined, and a phosphoprotein of Mr 29,000 is found exclusively associated with the germinal vesicle. Since we have shown previously that 12-O-tetradecanoyl phorbol 13-acetate inhibits fertilization (Y.Endo, R.M. Schultz, and G.S. Kopf, submitted), we examined the effects of this compound on the phosphoprotein patterns of metaphase II eggs. 12-O-Tetradecanoyl phorbol 13-acetate treatment stimulates the phosphorylation of a specific phosphoprotein of Mr 80,000.  相似文献   

12.
Surface characteristics of the bovine oocyte and its investments before, during, and after maturation, and fertilization in vitro were evaluated by scanning electron microscopy (SEM). Oocyte diameters were also measured during SEM analysis of the oocyte. The cumulus cells manifested a compact structure with minimal intercellular spaces among them in the immature oocytes. These became fully expanded with increased intercellular spaces after maturation in vitro, but contracted again after fertilization. The zona pellucida (ZP) showed a fibrous, open mesh-like structure in the maturing and matured oocytes. The size and number of meshes on the ZP decreased dramatically after fertilization. The vitelline surface of immature oocytes was characterized by distribution of tongue-shaped protrusions (TSPs) varying in density. After 10 and 22 hr of maturation incubation, oocyte surface microvilli (MV) increased to become the predominant surface structure, and TSPs decreased substantially. The vitelline surface of fertilized oocytes (at 6 and 20 hr) was similar to that of the matured oocytes, but unfertilized oocytes had less dense MV than did fertilized oocytes (at 20 hr). The diameter of the oocytes decreased from 99 to 80 μm during maturation and increased to 106 μm after insemination (P < 0.05). Membrane maturation was characterized by surface changes from a TSP-predominant pattern to a MV-predominant pattern. Thus, the bovine oocyte maturation process was found to involve the expansion of cumulus cells and the maturation of the ZP, which changes dramatically upon fertilization. Also, volumetric changes occurred in ooplasm processed for SEM following oocyte maturation and insemination. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The present study examined the effects of gonadotropins and ovarian steroids during in vitro meiotic maturation of rat oocytes on their ability to undergo in vitro fertilization. Fully grown oocytes were isolated from antral follicles of immature rats and cultured as oocyte-cumulus cell complexes (OCC) under conditions in which completion of meiotic maturation occurs spontaneously. They were then exposed to spermatozoa under conditions in which oocytes matured in vivo exhibit high fertilization rates. Compared with oocytes from pregnant mare's serum gonadotropin (PMSG) or follicle-stimulating hormone (FSH)-treated rats, a simiiar proportion of the oocytes (>80%) from untreated rats underwent germinal vesicle breakdown, but such oocytes had a lower rate of fertilization (70% vs. 20%). The presence of FSH during in vitro maturation restored the fertilization rate for oocytes from untreated rats, while a cytochrome P450 inhibitor, aminoglutethimide phosphate abolished this beneficial effect of FSH. The addition of progesterone during the in vitro maturation period duplicated the beneficial effect of FSH on fertilization rate of oocytes from untreated rats; oestradiol-17β was less effective in this regard, and 5α-dihydrotestosterone was ineffective. These findings indicate that FSH and progesterone, although having no apparent effect on nuclear maturation of the oocyte, play an important role during oocyte maturation in enabling normal fertilization to occur.  相似文献   

14.
Immature, Stage VI oocytes of Xenopus laevis fail to activate (i.e., to propagate a cortical reaction and elevate a fertilization envelope) when pricked or exposed to A23187. We determined the times during maturation when immature oocytes treated with progesterone in vitro developed the capacity to respond to pricking and to ionophore. Responsiveness to ionophore first appears at about 3.5-4.5 hr after progesterone treatment; all oocytes are activated by 8-9 hr after progesterone. The capacity to respond to pricking appears about 1.0-1.5 hr after first signs of ionophore responsiveness. We examined the cortical endoplasmic reticulum (CER) by TEM to determine whether the morphology of this component could be correlated with the development of responsiveness during maturation. Fully mature oocytes exhibit an extensive CER that (1) forms a "shell" around most cortical granules, (2) appears to interconnect cortical granules, and (3) forms junctions with the plasma membrane. The CER-plasma membrane junctions are especially obvious in preparations of isolated cortex. The elaborate CER is not present in immature oocytes. It first appears during maturation of progesterone-treated oocytes at 4.5-5.0 hr, coincident with the time when maturing oocytes develop their responsiveness to ionophore and to pricking. This temporal correlation is consistent with the hypothesis that the CER is one of the components required for regulation of intracellular free calcium in oocytes.  相似文献   

15.
16.
Effects of gonadotropins on the maturation of isolated oocytes and production of progesterone by porcine ovarian follicles from gonadotropin treated gilts have been studied in vitro. The addition of gonadotropins (2 I. U./ml, PMSG, HGC or 2 mg/ml FSH) to the culture medium resulted in increasing the number (84 - 90 %) of isolated oocytes which reached metaphase II. Expansion of the whole cumulus mass was observed only in media containing PMSG, whereas FSH or HCG alone did not cause these marked changes in the cumulus cells. Denudation of the eggs prior to culture gave no significant differences in the maturation rates between oocytes cultured in media with or without gonadotropins. In vitro maturation of follicle-enclosed oocytes took place only in HCG treated animals. Removing the ovary at 15 or 60 minutes after intravenous HCG administration induced oocyte maturation only in 22% and 17% respectively. A sharp increase in the number of oocytes which resume meiosis during follicle culture was observed 4 hours after HCG injection (84 %) and all of the oocytes of the gilts ovariectomized at 8 hours after HCG injection matured during the culture period. The progesterone production of isolated follicles from control gilts (only PMSG injected) increased slowly during a 96-hour culture period (from 48 to 240 ng progesterone/follicle), whereas the secretion of progesterone was drastically increased after a 15 minute interval between HCG injection and ovariectomy (from 42 to 950 ng progesterone/follicle). Follicles removed 24 hours after HCG injection showed a further increase in steroid production (2000 ng progesterone/follicle) and consistently secreted large amounts of progesterone during the culture period.  相似文献   

17.
Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development.  相似文献   

18.
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and ryanodine receptor (RyR) have been identified as two ligand-gated calcium channels which play a critical role in mediating calcium release in many different types of cells and tissues. The physiological significance of the two receptors in regulation of intracellular calcium during meiotic maturation and fertilization in the bovine oocyte was evaluated. Metabolic labeling of bovine oocytes by Met-Cys 35S during early and late maturation was followed by immunoprecipitation of both RyR and IP3R using specific antibodies against these two receptors. Results indicate that IP3R is translated throughout the maturation period; in contrast, RyR is only translated during the late maturation period of bovine oocytes. In addition, the experiments reported here investigate the temporal and spatial relationships between these calcium channels and the endoplasmic reticulum (ER) and cortical granules (CG). Immunocytochemistry, fluorescence staining and confocal microscopy were applied at four oocyte developmental stages: the germinal vesicleintact (GV-intact), metaphase I (MI) and metaphase II (MII) stages of maturation and the fertilized egg at 6 h post insemination (hpi). Although oocytes demonstrated some differences in staining patterns and localization, both receptor types showed apparent dynamic changes during meiotic maturation and dramatic decreases in signals after insemination. These results indicate the changes in the number and distribution of IP3R and RyR may account for the increased intracellular calcium responsiveness at fertilization. The IP3R appears to associate with the ER at the sub-vitelline membrane cortex in bovine oocytes. In addition, RyR appears to associate with the CG. In conclusion, although these two receptors may have different functional roles in regulation of calcium release during meiotic maturation and fertilization, it appears that both IP3R and RyR contribute to the significant increase of intracellular calcium during fertilization and activation in the bovine oocyte.  相似文献   

19.
Denuded oocytes freed of their vitelline envelope have been prepared by two methods, enzymatically with pronase and manually by microdissection. The response of denuded oocytes to progesterone, in terms of germinal vesicle breakdown (GVBD), was similar to that obtained with defolliculated oocytes (separated with collagenase from follicle cells, but still keeping their vitelline membrane). The same conclusion was drawn with respect to morphological features of the oocyte surface observed by transmission and scanning electron microscopy, before and after progesterone-induced GVBD. The synergistic effect of insulin and progesterone in denuded oocytes was comparable to that observed in defolliculated oocytes. Multiplication stimulating activity (MSA) had the same effect as insulin. These observations indicate that hormones act directly upon oocytes, without interference of the surrounding vitelline envelope and follicle cells.  相似文献   

20.
Influences of steroid hormone additions or of their binding by specific antisera on nuclear maturation and subsequent fertilization and cleavage of bovine oocytes were studied in vitro. It was found that progesterone in doses of 50 ng/ml, 250 ng/ml, 1 μg/ml or 5 μg/ml stimulates reinitiation and in doses of 1 or 5 μg/ml stimulates further development of meiosis. Antiserum to progesterone had opposite effects on nuclear maturation, but has no influence on the ability of matured oocytes to subsequent fertilization and cleavage. Testosterone additions (10 ng, 100 ng, 1 μg or 5 μg/ml) did not influence nuclear maturation, but antiserum to this hormone inhibited both meiosis reinitiation and completion, as well as lowered the rate of oocytes fertilized and embryos obtained. Estradiol (5, 50, 100 or 500 ng or 5 μg/ml) treatment stimulated reinitiation, but not nuclear maturation. Antiserum to estradiol activated both reinitiation, development and completion of meiosis, but the cells matured by estradiol deficit were as a rule uncapable of fertilization and further cleavage. Estradiol addition (1 μg/ml) to maturation medium together with FSH (10 μg/ml) (but not of FSH alone) lead to a significantly higher rate of fertilization and cleavage of matured cells.

Results obtained suggest (1) relative independence of reinitiation, further development of nuclear maturation and cytoplasmic maturation regulation in bovine oocytes as well as (2) the involvement of steroid hormones in these three processes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号