首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encephalitozoon spp. are the primary microsporidial pathogens of humans and domesticated animals. In this experiment, we test the efficacy of 4 commercial antimicrobials against an Encephalitozoon sp. infecting a grasshopper (Romalea microptera) host. Oral treatment with fumagillin or thiabendazole significantly reduced pathogen spore counts (93% and 88% respectively), whereas spore counts of grasshoppers fed quinine produced a non-significant 53% reduction in spores, and those fed streptomycin a non-significant 29% increase in spores, compared to the control. We observed a moderate dose-response effect for thiabendazole, whereby spore count decreased as drug consumption increased. No thiabendazole-treated animals died, whereas 27% of streptomycin-treated animals died, suggesting that thiabendazole was not toxic at the doses administered. The deaths among streptomycin-treated animals may have been caused by drug toxicity, parasite burden, or both. Although fumagillin and thiabendazole significantly reduced spore counts, in no individual was the pathogen totally eliminated. Our data confirm that microsporidia are difficult to control and that fumagillin and thiabendazole are partially effective antimicrobials against this group. Our study suggests that quinine and related alkaloids should be further examined for antimicrosporidial activity, and streptomycin should be examined as a possible enhancer of microsporidiosis.  相似文献   

2.

Background

The Apicomplexa are a diverse group of obligate protozoan parasites infesting a wide range of invertebrate and vertebrate hosts including humans. These parasites are notoriously difficult to control and many species continue to evolve resistance to commercial antibiotics. In this study, we sought to find an effective chemotherapeutic treatment against arthropod gregarines (Apicomplexa), and to identify candidate compounds for testing against other groups of protozoan parasites.

Methods

We tested eleven commercial antibiotics against a gregarine parasite of Romalea microptera grasshoppers. Infected insects were fed daily, lettuce containing known amounts of specific antibiotics. On Days 15 or 20, we measured the number of gregarines remaining in the digestive tract of each grasshopper.

Results

Treatment with metronidazole and griseofulvin in host insects significantly reduced gregarine counts, whereas, gregarine counts of insects fed, albendazole, ampicillin, chloramphenicol, fumagillin, quinine, streptomycin, sulfadimethoxine, thiabendazole or tetracycline, were not significantly different from the controls. However, albendazole produced a strong, but non-significant reduction in gregarine count, and streptomycin exhibited a non-significant antagonistic trend.

Conclusion

Our results confirm that gregarine infections are difficult to control and suggest the possibility that streptomycin might aggravate gregarine infection. In addition, the insect system described here, provides a simple, inexpensive, and effective method for screening antibiotics.  相似文献   

3.
Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.  相似文献   

4.
Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen.  相似文献   

5.
A new procedure for rapid determination of the levels of antibiotic sensitivity in pathogenic microorganisms with the use of fluorescent antibodies is described. The procedure was developed with the use of a model of the vaccinal strains of Bacillus anthracis. It is based on determination of the microbial antibiotic resistance with the method of serial dilutions on solid media. Still, the medium with an antibiotic is inoculated instead of the pathogen with the native material subject to the analysis. The antibiotic effect on the microorganism is estimated with the method of fluorescent antibodies. The replica preparations obtained as a result of the pathogen growth in a mixed culture on nutrient media containing definite concentrations of the antibiotic are examined with the method of luminescence microscopy. The modification of the immunofluorescent procedure for rapid determination of the microbial sensitivity to antibiotics does not require obligatory isolation of the pathogen as a pure culture. This makes the procedure more economic with respect to the time necessary for the analysis. The following conditions for performing rapid analysis with respect to Bacillus anthracis are required: the minimal concentration of the pathogen in the specimen (2.10(5) spores/ml), preliminary thermal treatment of the specimen for destroying the spore microflora, additional cultivation for 6-8 hours at 37 degrees C. The presence of the accompanying sporulating microflora, i.e. common microorganisms present in the atmosphere, soil and open water bodies does not prevent the performance of the analysis.  相似文献   

6.
Porcine myeloperoxidase was evaluated for its antimicrobial activity against plant pathogenic bacteria and fungi. The results indicated that the enzyme, in the presence of a small amount of hydrogen peroxide, was effective against a broad spectrum of plant pathogens. The growth of seven bacterial species, including nine pathovars, from the genera Erwinia , Pseudomonas and Xanthomonas , was significantly inhibited by the enzyme at a concentration as low as 0·4 U ml−1, while 4·0 U ml−1 was lethal to all plant pathogenic bacteria examined. Myeloperoxidase, at 40 U ml−1, was lethal to germinating spores from three isolates of the fungal plant pathogen Fusarium solani and two isolates from each of Colletotrichum gloeosporioides and C. malvarum . The enzyme's antifungal effects on the rice blast pathogen Magnaporthe grisea were studied both in vitro and on host plants. The enzyme significantly inhibited spore germination of two isolates of M. grisea races IC17 and IB49 at concentrations over 16 U ml−1, and disintegration of fungal spore walls was caused by 80 U ml−1. The enzyme was even more effective in reducing disease incidence of blast on young rice plants treated with 0·5 U ml−1, while 2·5 U ml−1 resulted in complete inhibition of infection. These results support and further extend the suggestion that myeloperoxidase could be used as a broad-spectrum biocontrol agent or as a transgenically expressed protein to combat diseases caused by plant pathogenic bacteria and fungi.  相似文献   

7.
Adaptation is normally viewed as the enemy of the antibiotic discovery and development process because adaptation among pathogens to antibiotic exposure leads to resistance. We present a method here that, in contrast, exploits the power of adaptation among antibiotic producers to accelerate the discovery of antibiotics. A competition-based adaptive laboratory evolution scheme is presented whereby an antibiotic-producing microorganism is competed against a target pathogen and serially passed over time until the producer evolves the ability to synthesize a chemical entity that inhibits growth of the pathogen. When multiple Streptomyces clavuligerus replicates were adaptively evolved against methicillin-resistant Staphylococcus aureus N315 in this manner, a strain emerged that acquired the ability to constitutively produce holomycin. In contrast, no holomycin could be detected from the unevolved wild-type strain. Moreover, genome re-sequencing revealed that the evolved strain had lost pSCL4, a large 1.8 Mbp plasmid, and acquired several single nucleotide polymorphisms in genes that have been shown to affect secondary metabolite biosynthesis. These results demonstrate that competition-based adaptive laboratory evolution can constitute a platform to create mutants that overproduce known antibiotics and possibly to discover new compounds as well.  相似文献   

8.
We studied the effects of combinations of Bacillus thuringiensis spores and toxins on the mortality of diamondback moth (Plutella xylostella) larvae in leaf residue bioassays. Spores of B. thuringiensis subsp. kurstaki increased the toxicity of crystals of B. thuringiensis subsp. kurstaki to both resistant and susceptible larvae. For B. thuringiensis subsp. kurstaki, resistance ratios were 1,200 for a spore-crystal mixture and 56,000 for crystals without spores. Treatment of a spore-crystal formulation of B. thuringiensis subsp. kurstaki with the antibiotic streptomycin to inhibit spore germination reduced toxicity to resistant larvae but not to susceptible larvae. In contrast, analogous experiments with B. thuringiensis subsp. aizawai revealed no significant effects of adding spores to crystals or of treating a spore-crystal formulation with streptomycin. Synergism occurred between Cry2A and B. thuringiensis subsp. kurstaki spores against susceptible larvae and between Cry1C and B. thuringiensis subsp. aizawai spores against resistant and susceptible larvae. The results show that B. thuringiensis toxins combined with spores can be toxic even though the toxins and spores have little or no independent toxicity. Results reported here and previously suggest that, for diamondback moth larvae, the extent of synergism between spores and toxins of B. thuringiensis depends on the strain of insect, the type of spore, the set of toxins, the presence of other materials such as formulation ingredients, and the concentrations of spores and toxins.  相似文献   

9.
Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) reexamining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.  相似文献   

10.
Staphylococcus aureus is a major human pathogen and one of the more prominent pathogens causing biofilm related infections in clinic. Antibiotic resistance in S. aureus such as methicillin resistance is approaching an epidemic level. Antibiotic resistance is widespread among major human pathogens and poses a serious problem for public health. Conventional antibiotics are either bacteriostatic or bacteriocidal, leading to strong selection for antibiotic resistant pathogens. An alternative approach of inhibiting pathogen virulence without inhibiting bacterial growth may minimize the selection pressure for resistance. In previous studies, we identified a chemical series of low molecular weight compounds capable of inhibiting group A streptococcus virulence following this alternative anti-microbial approach. In the current study, we demonstrated that two analogs of this class of novel anti-virulence compounds also inhibited virulence gene expression of S. aureus and exhibited an inhibitory effect on S. aureus biofilm formation. This class of anti-virulence compounds could be a starting point for development of novel anti-microbial agents against S. aureus.  相似文献   

11.
Multi-drug-resistant infections caused by Gram-negative pathogens are rapidly increasing, highlighting the need for new chemotherapies. Unlike Gram-positive bacteria, where many different chemical classes of antibiotics show efficacy, Gram-negatives are intrinsically insensitive to many antimicrobials including the macrolides, rifamycins, and aminocoumarins, despite intracellular targets that are susceptible to these drugs. The basis for this insensitivity is the presence of the impermeant outer membrane of Gram-negative bacteria in addition to the expression of pumps and porins that reduce intracellular concentrations of many molecules. Compounds that sensitize Gram-negative cells to "Gram-positive antibiotics", antibiotic adjuvants, offer an orthogonal approach to addressing the crisis of multi-drug-resistant Gram-negative pathogens. We performed a forward chemical genetic screen of 30,000 small molecules designed to identify such antibiotic adjuvants of the aminocoumarin antibiotic novobiocin in Escherichia coli. Four compounds from this screen were shown to be synergistic with novobiocin including inhibitors of the bacterial cytoskeleton protein MreB, cell wall biosynthesis enzymes, and DNA synthesis. All of these molecules were associated with altered cell shape and small molecule permeability, suggesting a unifying mechanism for these antibiotic adjuvants. The potential exists to expand this approach as a means to develop novel combination therapies for the treatment of infections caused by Gram-negative pathogens.  相似文献   

12.
Aims:  Antibiotics from Bacillus subtilis JA show strong pathogen inhibition ability, which has potential market application; yet, the composition of these antibiotics has not been elucidated. The aim of this paper is to isolate and identify these antibiotics.
Methods and Results:  The antagonistic activity of JA was tested in vitro ; it exhibited strong inhibition against some important phytopathogens and postharvest pathogens. Crude antibiotic production was extracted with methanol from the precipitate by adding 6 mol l−1 HCl to the bacillus-free culture broth. The crude extract was run on Diamonsil C18 column (5  μ m, 250 × 4·6 mm) in HPLC system to separate the antibiotics. Major antibiotics were classified into three lipopeptide families according to electrospray ionization–mass spectrometry analysis. Subsequently, the classification of antibiotics was confirmed with typical collision-induced dissociation fragments.
Conclusions:  Three kinds of antibiotics were isolated from B. subtilis JA and were identified to the lipopeptide families, surfactin, iturin and fengycin. These compounds could function as biocontrol agents against a large spectrum of pathogens.
Significance and Impact of the Study:  This study provided a reliable and rapid method for isolation and structural characterization of lipopeptide antibiotics from B. subtilis .  相似文献   

13.
He  Fang  Liu  Yuan  Li  Pan  Wu  Xiaoyan  Xia  Yaoyao  Zhang  Dong  Li  Nengzhang  Peng  Yuanyi  Zhu  Guoqiang  Hardeland  Rüdiger  Reiter  Russel J.  Ren  Wenkai 《中国科学:生命科学英文版》2022,65(7):1430-1444

Bacterial infections caused by Gram-negative pathogens represent a growing burden for public health worldwide. Despite the urgent need for new antibiotics that effectively fight against pathogenic bacteria, very few compounds are currently under development or approved in the clinical setting. Repurposing compounds for other uses offers a productive strategy for the development of new antibiotics. Here we report that the multifaceted melatonin effectively improves survival rates of mice and decreases bacterial loads in the lung during infection. Mechanistically, melatonin specifically inhibits the activity of citrate synthase of Gram-negative pathogens through directly binding to the R300, D363, and H265 sites, particularly for the notorious Pasteurella multocida. These findings highlight that usage of melatonin is a feasible and alternative therapy to tackle the increasing threat of Gram-negative pathogen infections via disrupting metabolic flux of bacteria.

  相似文献   

14.
Chemotherapeutic Studies of Mycobacterial Infections in Mice   总被引:1,自引:0,他引:1       下载免费PDF全文
Of six antibiotics investigated, streptovaricin C had the most marked chemotherapeutic effect on Mycobacterium kansasii infections in mice. By the intraperitoneal route this antibiotic caused elimination of the pathogens from all organs. Kanamycin eliminated the pathogens from the lungs of all animals and from the spleens and livers of most of them. Bluensomycin also removed the pathogens from the lungs of all animals, and spectinomycin and lincomycin, from the lungs of the majority of the animals. The three latter antibiotics lowered the bacterial counts in liver and spleen. Streptovaricin C also decreased the bacterial counts in brain, spleen, and liver of mice inoculated intracerebrally with M. kansasii. In one experiment it completely eliminated this pathogen from the spleen and almost completely from the liver. The effect of streptovaricin C on the cerebral infection was more marked than that of streptovaricin complex. Respiratory and cerebral infections of mice with M. avium, serotypes I and II, were limited by streptovaricin C, and marked decreases of the bacterial counts in brain, lungs, spleen, and liver were observed.  相似文献   

15.
The mode of action of the entomopathogenic bacterium Bacillus thuringiensis ( Bt ) remains a matter of debate. Recent reports have claimed that aseptic lepidopteran hosts were not susceptible to Bt and that inoculation with mid-gut bacteria restores pathogenicity. These claims are controversial because larvae were rendered aseptic by consuming antibiotics, although the effect of these antibiotics on Bt was not examined. We tested the generality of the mid-gut bacteria hypothesis in the diamondback moth, Plutella xylostella using properly controlled experiments that investigated the effect of antibiotic consumption and absence of gut microbiota separately. We found that purified Bt toxin and spore/toxin mixtures were fully pathogenic to larvae reared aseptically. Persistence of antibiotics in larval tissues was implicated in reducing host mortality because larval consumption of the antibiotic rifampicin reduced the pathogenicity of rifampicin-sensitive Bt strains but not rifampicin-resistant strains. Inoculating larvae with Enterobacter sp. Mn2 reduced the mortality of larvae feeding on Bt HD-1 and the presence of a culturable gut microbiota also reduced the pathogenicity of the Bt toxin Cry1Ac, in agreement with other studies indicating that an intestinal microbiota can protect taxonomically diverse hosts from pathogen attack. As ingestion of antibiotics suppresses host mortality the vegetative growth of Bt in the host must be important for its pathogenicity. Furthermore, claims that aseptic larvae are not susceptible to Bt must be supported by experiments that control for the effect of administering antibiotics.  相似文献   

16.
Nonpathogenic, antibiotic-producing streptomycetes have been shown to reduce potato scab when added to disease-conducive soil. Spontaneous mutants of the pathogenic Streptomyces scabies RB4 that are resistant to at least one antibiotic activity produced by the nonpathogenic suppressive isolates Streptomyces diastatochromogenes strain PonSSII and S. scabies PonR have been isolated. To determine the importance of antibiosis in this biocontrol system, these mutants were investigated for their ability to cause disease in the presence of the two pathogen antagonists in a greenhouse assay. Disease caused by one of the mutant strains was reduced in the presence of both suppressive isolates, whereas disease caused by the other five mutants was not significantly reduced by either suppressive strain. In addition, a nonpathogenic mutant of S. scabies RB4 was isolated, which produced no detectable in vitro antibiotic activity and reduced disease caused by its pathogenic parent strain when the pathogen and mutant were coinoculated into soil. Population densities of the pathogen were consistently lower than those of the suppressive strains when individual strains were inoculated into soil. When a pathogen was coinoculated with a suppressive strain, the total streptomycete population density in the pot was always less than that observed when the suppressive isolate was inoculated alone. When the pathogens were inoculated individually into soil, a positive correlation was seen between population density and disease severity. In coinoculation experiments with pathogen and suppressive strains, higher total streptomycete population densities were correlated with lower amounts of disease.  相似文献   

17.
We investigated the in vitro antibiotic activity of the 19-amino acid antimicrobial peptide HP (2-20), derived from the N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1), against antibiotic susceptible and resistant pathogens from a patient with gallstones. HP (2-20) was active against antibiotic-susceptible and antibiotic-resistant clinical isolates of pathogens from a patient with gallstones, but this peptide showed no hemolytic activity against normal human erythrocytes. HP (2-20) acted synergistically with ciprofloxacin against pathogenic bacteria. Fluorescence activated flow cytometry revealed that the effect of HP (2-20) was dependent on energy and salt concentration. In addition, scanning electron microscopy showed that HP (2-20) caused significant morphological alterations to the cell surface of pathogens. Using 16S rDNA sequences, we found that isolates from bile were 100% homologous to Pseudomonas aeruginosa. These findings suggest that HP (2-20) may be useful clinically as an antibiotic against acquired pathogens from patients with gallstones and against pathogens resistant to other antibiotics.  相似文献   

18.
Not only cyclic polypeptide antibiotics such as polymyxin B, colistin and gramicidin S but also aminoglycoside antibiotics such as streptomycin, kanamycin, gentamicin and kanamycin derivatives combined with the resting spores of Bacillus subtilis and inhibited outgrowth or vegetative growth after germination. All the antibiotics other than gramicidin S were released from the resting spores and their inhibitory action was reversed by the addition of Ca2+ and Fe3+. As the above antibiotics have free amino (or guanidine) groups in common, it was assumed that such groups play an important role in binding of the antibiotics to the resting spores. Moreover, it was shown that protamine and poly-l-lysine were also bound to the resting spores and were released from them by Ca2+. On the other hand, free carboxyl groups had been demonstrated in the outermost surface of the resting spores in a previous study. Thus, we assume that the mode of binding of the antibiotics to the resting spores may be due to the formation of reinforced ionic bonds between amino (or guanidine) groups in the antibiotics and carboxyl groups on the spore surface.  相似文献   

19.
Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method.  相似文献   

20.
The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号