首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

2.
The distribution of the Mg-dependent ATPase associated with a microsomal fraction of rabbit psoas muscle was studied histochemically and its localization in relation to the vesicles of the fraction and to the structure of intact fixed muscle was determined. Although enzyme activity was retained after fixation in hydroxyadipaldehyde and in glyoxal, it was lost after fixation in glutaraldehyde or after 4 hr fixation in formaldehyde. Activity was optimally demonstrated when incubations were conducted at 17°C, in media containing 125 mM Trismaleate buffer, pH 7.5, 5 mM ATP, 4 mM MgCl2, and 1 mM Pb(NO3)2. After such incubations, activity was present throughout the sarcoplasmic reticulum, but was absent from the T system. Activation by Na or K could not be demonstrated histochemically. However, the other biochemical properties of the enzyme in the isolated vesicles and in intact muscle were similar with respect to Mg dependence, substrate specificity, inhibition by Ca, N-ethyl maleimide, p-hydroxymercuribenzoate, and lack of inhibition by ouabain.  相似文献   

3.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

4.
The effects on the Schwann cell electrical potential of external ionic concentrations and of K-strophanthoside were investigated. Increasing (K)o depolarized the cell. The potential is related to the logarithm of (K)o in a quasi-linear fashion. The linear portion of the curve has a slope of 45 mv/ten-fold change in (K)o. Diminutions of (Na)o and (Cl)o produced only small variations in the potential. Calcium and magnesium can be replaced by 44 mM calcium without altering the potential. Increase of (Ca)o to 88 mM produced about 10 mv hyperpolarization. The cell was hyperpolarized by 11 mv and 4 mv within 1 min after applying K-strophanthoside at concentrations of 10-3 and 10-5 M, respectively. No variations of cellular potassium, sodium, or chloride were observed 3 min after applying the glycoside. The hyperpolarization caused by 10-3 M K-strophanthoside was not observed when (K)o was diminished to 1 or 0.1 mM or was increased to 30 mM. At a (K)o of 30 mM, 10-2 M strophanthoside was required to produce the hyperpolarizing effect. In high calcium, the cell was further hyperpolarized by the glycoside. The initial hyperpolarization caused by the glycoside was followed by a gradual depolarization and a decrease of the cellular potassium concentration. The results indicate that the Schwann cell potential of about -40 mv is due to ionic diffusion, mainly of potassium, and to a cardiac glycoside-sensitive ion transport process.  相似文献   

5.
6.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

7.
Action potentials of single frog nerve fibers were recorded with the air-gap method in "low Ca" (0.26 mM) and "high Ca" (4.2 mM) solutions and compared to spikes in normal Ringer''s (1.05 mM Ca). On increasing (Ca)o the action potentials became shorter, the "knee" during the falling phase as well as the threshold for abolition moved to internal potentials more positive, and the spike recovery during the relative refractory period was faster. Outward current pulses applied during an action potential affected its configuration more in low Ca than in high Ca. The onset of the delayed rectification (in the absence of Na) was found faster in high Ga. After-potentials during anelectrotonus declined more rapidly in high Ca than in low Ca. The results are compared primarily with the voltage-clamp analysis of Ca effects on squid axons and satisfactory qualitative agreement is reached.  相似文献   

8.
Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic efficiency on d-lyxose, suggesting that the enzyme is d-lyxose isomerase. Escherichia coli BL21 expressing the recombinant protein, of 19.5 kDa, showed higher activity at 40 to 45°C and pH 7.5 to 8.0 in the presence of 1.0 mM Mn2+. The apparent Km values for d-lyxose and d-mannose were 30.4 ± 0.7 mM and 26 ± 0.8 mM, respectively. The catalytic efficiency (kcat/Km) for lyxose (3.2 ± 0.1 mM−1 s−1) was higher than that for d-mannose (1.6 mM−1 s−1). The purified protein was applied to the bioproduction of d-lyxose and d-glucose from d-xylose and d-mannose, respectively, along with the thermostable xylose isomerase of Thermus thermophilus HB08. From an initial concentration of 10 mM d-lyxose and d-mannose, 3.7 mM and 3.8 mM d-lyxose and d-glucose, respectively, were produced by two-step isomerization. This two-step isomerization is an easy method for in vitro catalysis and can be applied to industrial production.  相似文献   

9.
Zhang XS 《Genetics》2008,180(1):687-695
Why does phenotypic variation increase upon exposure of the population to environmental stresses or introduction of a major mutation? It has usually been interpreted as evidence of canalization (or robustness) of the wild-type genotype; but an alternative population genetic theory has been suggested by J. Hermisson and G. Wagner: “the release of hidden genetic variation is a generic property of models with epistasis or genotype–environment interaction.” In this note we expand their model to include a pleiotropic fitness effect and a direct effect on residual variance of mutant alleles. We show that both the genetic and environmental variances increase after the genetic or environmental change, but these increases could be very limited if there is strong pleiotropic selection. On the basis of more realistic selection models, our analysis lends further support to the genetic theory of Hermisson and Wagner as an interpretation of hidden variance.A common experimental observation in quantitative genetics is a higher phenotypic variance for quantitative traits in populations that carry a major mutation or are exposed to environmental stresses (e.g., heat shock) (Scharloo 1991; for a recent review see Gibson and Dworkin 2004). Part of the added variance must be genetic because the population responds to artificial selection. The lower variability of the wild type than that of the mutants has been interpreted as evidence for robustness or canalization (Waddington 1957): that is, under the new condition the magnitudes of gene effects across all trait loci increase relative to the original condition. The importance of canalization has been recognized for a long time and has been the subject of renewed interest recently (see de Visser et al. 2003 and Hansen 2006 for reviews).An alternative population genetic theory has been proposed by Hermisson and Wagner (2004), who suggest that the increase in genetic variance VG after the change in environmental conditions or genetic background is a generic property of the population, with no need to introduce canalization (Waddington 1957). The theory appears simple. Under mutation–selection balance (MSB), the mutant alleles are at a selective disadvantage and there is a negative correlation between frequencies and effects of mutations: mutant alleles of small effects on the trait segregate at intermediate frequencies. After the change in genetic or environmental background, gene effects consequently change due to G × E interaction or epistasis, which reduces the negative correlation because genes that were previously of small effects and at intermediate frequencies may now have large effects. That is, the frequencies of alleles are determined by the previous MSB, while their new effects are at least partly determined by the new conditions. The genetic variance will therefore increase.Hermisson and Wagner (2004) found that the predicted increase in genetic variance can be substantial; however, the predicted increase is highly sensitive to the population size and can increase without bound with increasing population size (see their Figure 2 and Equation 16). Genetic variance would enlarge with the population size within a small population (Lynch and Hill 1986; Weber and Diggins 1990), but becomes insensitive to the population size within large populations (Falconer and Mackay 1996, Chap. 20). Hence the unbounded increase under the novel environmental condition appears to us as a downside of their theory, even though the predicted increase can be reduced if the changed environmental condition is not novel but there is previous adaptation to it (see their Figure 3).Open in a separate windowFigure 2.—Influence of the pleiotropic effect (sp) on the increase of genetic variance ΔG in units of the interaction parameter ξ for a “typical” situation with strength of stabilizing selection ω2 = 0.1μ2, mutation rate λ = 0.1 per haploid genome per generation, and population size Ne = 106. The allelic pleiotropic effect on fitness and its variance effect on the trait independently follow gamma distributions with shape parameters βs and βv, respectively. The mean of a2 across loci is E(v) = E(a2) = 10−4μ2.Open in a separate windowOpen in a separate windowFigure 3.—Influence of shapes of distributions of mutational effects on (a) the variances at mutation–selection balance and (b) their increases after the genetic or environmental change. The squares represent the genetic variance and its increase and the triangles the environmental variance and its increase. The mutation rate is λ= 0.1 per haploid genome per generation, the population size is Ne = 109, and the strength of real stabilizing selection is ω2 = 0.1μ2. Allelic effects on trait value (a), fitness (s), and residual variance (b) are assumed to be independently distributed such that v = a2 follows a gamma () distribution with mean 10−4μ2, s follows gamma (βs) with mean sp = 0.05, and b follows gamma (βb) with mean 10−4μ2.The basic model that Hermisson and Wagner (2004) employed is that the quantitative trait is under real stabilizing selection and mutant alleles have effects on the focal trait only by changing its so-called locus genetic variance. At the mutation–real stabilizing selection balance, some mutants can segregate at intermediate frequencies because of their small effects and therefore weak selection; and there are more such mutants the more strongly leptokurtic is the distribution of effects at individual loci. The unbounded increase of Hermisson and Wagner (2004) results from such a gene-frequency distribution; but it has been shown (see Barton and Turelli 1989; Falconer and Mackay 1996; Lynch and Walsh 1998) that solely stabilizing selection, whether modeled with a Gaussian (Kimura 1965) or a house of-cards approximation (Turelli 1984) or even the generalized form of Hermisson and Wagner (2004) (i.e., their Equation 14), cannot provide a satisfactory explanation for the high levels of genetic variance observed in natural populations under realistic values of mutation and selection parameters.A common observation is that one trait is controlled by many genes and one gene can influence many traits; i.e., pleiotropy is ubiquitous (Barton and Turelli 1989; Barton and Keightley 2002; Mackay 2004; Ostrowski et al. 2005). Recent detailed studies suggest that pleiotropy calculated as the number of phenotypic traits affected varies considerably among quantitative trait loci (QTL) (Cooper et al. 2007; Albert et al. 2008; Kenney-Hunt et al. 2008; Wagner et al. 2008). Such pleiotropic effects must influence the magnitude of the variance. Though some genes have little effect on the focal trait, they almost certainly affect other traits and therefore are not neutral. The inclusion of pleiotropic effects on fitness strengthens the overall selection on mutant alleles and, assuming such pleiotropic effects are mainly deleterious, maintains them at low frequencies. The genetic variance for a trait is therefore likely to be maintained at lower levels than that under only real stabilizing selection on the trait alone (Tanaka 1996). Although the gene-frequency distribution is much more extreme under this joint model, the relevant rate of mutation is genomewide and hence is much larger than that where mutation affects only the focal trait as is assumed in the real stabilizing selection model (Turelli 1984; Falconer and Mackay 1996). Taking into account empirical knowledge of mutation parameters, a combination of both pleiotropic and real stabilizing selection appears to be a plausible mechanism for the maintenance of quantitative genetic variance (Zhang et al. 2004). If pleiotropic selection is much stronger than real stabilizing selection, the association between frequency and effect of mutant alleles is weaker than that for a real stabilizing selection model. Further, if overall selection is stronger than recurrent mutation, the frequency distribution of mutant alleles will be extreme. Under those situations, the increase of genetic variance after the genetic or environmental change will be kept at lower levels than that of Hermisson and Wagner (2004), and hence the unbounded increase could be avoided.Further, Hermisson and Wagner (2004) assume that the environmental variance is not under genetic control (i.e., the variance of phenotypic value given genotypic value is the same for all genotypes) and therefore is not subject to change. This assumption conflicts with the increasingly accumulating empirical data that indicate otherwise (Zhang and Hill 2005; Mulder et al. 2007 for reviews). Direct experimental evidence is available that mutation can directly affect environmental variance, VE (Whitlock and Fowler 1999; Mackay and Lyman 2005), and Baer (2008) provides what is perhaps the first clear demonstration that mutations increase environmental variances, on the basis of data for body size and productivity of Caenorhabditis elegans, and finds that the magnitudes of the increases are of the same order as those in the genetic variance.As real stabilizing selection on phenotype favors genotypes possessing low VE (Gavrilets and Hastings 1994; Zhang and Hill 2005), a mutant that contributes little to VE is more favored by stabilizing selection than one that contributes a lot. With all else being the same, mutants with small effect on VE thus segregate at relatively high frequencies at MSB. That is, there is a negative correlation between the effect on VE and the frequency of mutant genes. After the genetic or environmental change, some mutants that were previously of small effects on VE have large effects due to G × E interaction or epistasis while their frequencies remain roughly the same as in the previous MSB. This certainly increases environmental variance.In this note, we first assume that mutant alleles can affect only the mean value of a focal quantitative trait and otherwise affect fitness through their pleiotropic effects (Zhang et al. 2004) and try to answer the following questions: How will the conclusion of Hermisson and Wagner (2004) be affected by taking into account the pleiotropic effect of mutants? Can the “unbounded increase” be avoided? We then further assume that mutant alleles can also directly affect the environmental variance of the focal trait (Zhang and Hill 2008) and investigate how both VG and VE change following the genetic or environmental change in the population.  相似文献   

10.
The use of β-lactam antibiotics has led to the evolution and global spread of a variety of resistance mechanisms, including β-lactamases, a group of enzymes that degrade the β-lactam ring. The evolution of increased β-lactam resistance was studied by exposing independent lineages of Salmonella typhimurium to progressive increases in cephalosporin concentration. Each lineage carried a β-lactamase gene (blaTEM-1) that provided very low resistance. In most lineages, the initial response to selection was an amplification of the blaTEM-1 gene copy number. Amplification was followed in some lineages by mutations (envZ, cpxA, or nmpC) that reduced expression of the uptake functions, the OmpC, OmpD, and OmpF porins. The initial resistance provided by blaTEM-1 amplification allowed the population to expand sufficiently to realize rare secondary point mutations. Mathematical modeling showed that amplification often is likely to be the initial response because events that duplicate or further amplify a gene are much more frequent than point mutations. These models show the importance of the population size to appearance of later point mutations. Transient gene amplification is likely to be a common initial mechanism and an intermediate in stable adaptive improvement. If later point mutations (allowed by amplification) provide sufficient adaptive improvement, the amplification may be lost.THE extensive use of β-lactam antibiotics has led to the evolution and spread of many chromosomal-, plasmid-, and transposon-borne resistance mechanisms (Livermore 1995; Weldhagen 2004). Prominent among these mechanisms is a class of enzymes, β-lactamases, that hydrolyze the β-lactam ring (Ambler 1980; Poole 2004). TEM-1 β-lactamase, encoded by the blaTEM-1 gene, hydrolyzes both penicillins and early cephalosporins (Matagne et al. 1990). As bacteria developed resistance, stable extended-spectrum cephalosporins (ESCs) were introduced, leading to evolution of TEM sequence variants with improved ESC hydrolysis (Petrosino et al. 1998). Resistance to β-lactams can also result from mutations that reduce levels of outer membrane proteins involved in uptake, altered target proteins (penicillin-binding proteins) to reduce β-lactam binding, or increased expression of efflux pumps that export the antibiotics (Poole 2004; Martínez-Martínez 2008; Zapun et al. 2008).Resistance to β-lactam antibiotics is linearly correlated with the lactamase level over a large range (Nordström et al. 1972) and resistance to β-lactam antibiotics can be provided by increasing enzyme levels. An early illustration of this process is the finding that Escherichia coli can develop ampicillin resistance by amplifying its ampC gene (Edlund and Normark 1981). Similar amplification has been observed in both eubacteria and eukaryotes (Craven and Neidle 2007; Wong et al. 2007) in response to various selective pressures, including antibiotics (Andersson and Hughes 2009; Sandegren and Andersson 2009). In an unselected bacterial population, the frequency of cells with a duplication of any specific chromosomal region ranges between 10−2 and 10−5 depending on the region (Anderson and Roth 1981), whereas a point mutation in that gene is expected to be carried by perhaps 1 cell in 107–108 (Hudson et al. 2002). Thus, the rate of duplication formation is ∼10−5/cell/division and further increases ∼0.01/cell/division (Pettersson et al. 2008) while the base substitution rate is ∼10−10/cell/division/base pair (Hudson et al. 2002). Thus, it is apparent that variants with an increased level of any enzyme activity are more likely to owe the increase to a gene copy number change than to a point mutation. Furthermore, because of the high intrinsic instability of tandem amplifications, haploid segregants are expected to take over the population when the selection pressure is released (Pettersson et al. 2008).To examine the importance of gene amplification in bacterial adaptation to cephalosporins, several independent Salmonella typhimurium lineages carrying the blaTEM-1 gene were allowed to develop resistance to progressively increased concentrations of cephalothin (a first-generation cephalosporin) and cefaclor (a second-generation cephalosporin). As these lineages developed resistance to higher antibiotic levels, amplification of the blaTEM-1 gene was the primary and most common resistance mechanism, which in some cases was followed by acquisition of rare point mutations that provided stable resistance.  相似文献   

11.
The initial rate of thymidine-3H incorporation into the acid-soluble pool by cultured Novikoff rat hepatoma cells was investigated as a function of the thymidine concentration in the medium. Below, but not above 2 µM, thymidine incorporation followed normal Michaelis-Menten kinetics at 22°, 27°, 32°, and 37°C with an apparent Km of 0.5 µM, and the Vmax values increased with an average Q10 of 1.8 with an increase in temperature. The intracellular acid-soluble 3H was associated solely with thymine nucleotides (mainly deoxythymidine triphosphate [dTTP]). Between 2 and 200 µM, on the other hand, the initial rate of thymidine incorporation increased linearly with an increase in thymidine concentration in the medium and was about the same at all four temperatures. Pretreatment of the cells with 40 or 100 µM p-chloromercuribenzoate for 15 min or heat-shock (49.5°C, 5 min) markedly reduced the saturable component of uptake without affecting the unsaturable component or the phosphorylation of thymidine. The effect of p-chloromercuribenzoate was readily reversed by incubating the cells in the presence of dithiothreitol. Persantin and uridine competitively inhibited thymidine incorporation into the acid-soluble pool without inhibiting thymidine phosphorylation. At concentrations below 2 µM, thymidine incorporation into DNA also followed normal Michaelis-Menten kinetics and was inhibited in an apparently competitive manner by Persantin and uridine. The apparent Km and Ki values were about the same as those for thymidine incorporation into the nucleotide pool. The over-all results indicate that uptake is the rate-limiting step in the incorporation of thymidine into the nucleotide pool as well as into DNA. The cells possess an excess of thymidine kinase, and thymidine is phosphorylated as rapidly as it enters the cells and is thereby trapped. At low concentrations, thymidine is taken up mainly by a transport reaction, whereas at concentrations above 2 µM simple diffusion becomes the principal mode of uptake. Evidence is presented that indicates that uridine and thymidine are transported by different systems. Upon inhibition of DNA synthesis, net thymidine incorporation into the acid-soluble pool ceased rapidly. Results from pulse-chase experiments indicate that a rapid turnover of dTTP to thymidine may be involved in limiting the level of thymine nucleotides in the cell.  相似文献   

12.
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin''s cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.  相似文献   

13.
The effects of acriflavine on the fine structure and function of the mitochondria and the kinetoplast in Crithidia fasciculata have been investigated. A mitochondrial fraction was prepared by differential centrifugation of cells broken by grinding with neutral alumina. Isolated mitochondria or intact cells revealed by spectrophotometric measurements the presence of cytochromes a + a 3, b, c 555 and o. After cells were grown in acriflavine for 3–4 days, the fine structure of the mitochondria and their cytochrome content were affected. Cells grown in 5.0 µM acriflavine had a threefold decrease in cytochrome a + a 3 and decreased respiratory activity. The mitochondrial preparation from these cells had a fivefold decrease in cytochrome a + a 3 and a less but significant decrease of other cytochromes present. There was also a decrease in the mitochondrial enzyme activities of NADH, succinic and L-α-glycerophosphate oxidases, and succinic and L-α-glycerophosphate dehydrogenases. Dyskinetoplastic cells could be demonstrated after growth in 1.0 µM acriflavine. At 5 µM, 80–90% of the cells were dyskinetoplastic. The kinetoplastic DNA was condensed, nonfibrillar, and did not incorporate thymidine-3H. The mitochondria in these cells had few cristae and were shorter and more swollen than the controls. Acriflavine may induce the fine structure effects we have observed and may affect the formation of the mitochondria in C. fasciculata.  相似文献   

14.
Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of l- and d-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the d-Glu-d-Lys bond had the unusual γ→ϵ arrangement (GlcNAc-MurNAc-l-Ala-γ-d-Glu-ϵ-d-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-l-Ala-γ-d-Glu-l-Lys-d-Ala). The first dimer contained a disaccharide-l-Ala as the acyl donor cross-linked to the α-amine of d-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a d-Ala4-α-d-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of d-Lys in peptidoglycan synthesis, both as a surrogate of l-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the l-Ala1(α→α)d-Lys3 and d-Ala4(α→α)d-Lys3 types.Peptidoglycan (or murein) is a giant macromolecule whose main function is the protection of the cytoplasmic membrane against the internal osmotic pressure. It is composed of alternating residues of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc)2 cross-linked by short peptides (1). The composition of the peptide stem in nascent peptidoglycan is l-Ala1-γ-d-Glu2-X3-d-Ala4-d-Ala5, where X is most often meso-diaminopimelic acid (meso-A2pm) or l-lysine in Gram-negative and Gram-positive species, respectively (2, 3). In the mature macromolecule, the last d-Ala residue is removed. Cross-linking of the glycan chains generally occurs between the carboxyl group of d-Ala at position 4 of a donor peptide stem and the side-chain amino group of the diamino acid at position 3 of an acceptor peptide stem (4→3 cross-links). Cross-linking is either direct or through a short peptide bridge such as pentaglycine in Staphylococcus aureus (2, 3). The enzymes for the formation of the 4→3 cross-links are active-site serine dd- transpeptidases that belong to the penicillin-binding protein (PBP) family and are the essential targets of β-lactam antibiotics in pathogenic bacteria (4). Catalysis involves the cleavage of the d-Ala4-d-Ala5 bond of a donor peptide stem and the formation of an amide bond between the carboxyl of d-Ala4 and the side chain amine at the third position of an acceptor stem. Transpeptidases of the ld specificity are active-site cysteine enzymes that were shown to act as surrogates of the PBPs in mutants of Enterococcus faecium resistant to β-lactam antibiotics (5). They cleave the X3-d-Ala4 bond of a donor stem peptide to form 3→3 cross-links. This alternate mode of cross-linking is usually marginal, although it has recently been shown to predominate in non-replicative “dormant” forms of Mycobacterium tuberculosis (6).Thermotoga maritima is a Gram-negative, extremely thermophilic bacterium isolated from geothermally heated sea floors by Huber et al. (7). A morphological characteristic is the presence of an outer sheath-like envelope called “toga.” Although the organism has received considerable attention for its biotechnological potential, studies about its peptidoglycan are scarce (811), and in particular the fine structure of the macromolecule is still unknown. In their initial work, Huber et al. (7) showed that the composition of its peptidoglycan was unusual for a Gram-negative species, because it contained both isomers of lysine and no A2pm. Recently, we purified and studied the properties of T. maritima MurE (12); this enzyme is responsible for the addition of the amino acid residue at position 3 of the peptide stem (13, 14). We demonstrated that T. maritima MurE added in vitro l- and d-Lys to UDP-MurNAc-l-Ala-d-Glu. Although l-Lys was added in the usual way, yielding the conventional nucleotide UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys containing a d-Glu(γ→α)l-Lys amide bond, the d-isomer was added in an “upside-down” manner, yielding the novel nucleotide UDP-MurNAc-l-Ala-d-Glu(γ→ϵ)d-Lys. We also showed that the d-Lys-containing nucleotide was not a substrate for T. maritima MurF, the subsequent enzyme in the biosynthetic pathway, whereas this ligase catalyzed the addition of dipeptide d-Ala-d-Ala to the l-Lys-containing tripeptide, yielding the conventional UDP-MurNAc-pentapeptide (12).However, both the l-Lys-containing UDP-MurNAc-pentapeptide and d-Lys-containing UDP-MurNAc-tripeptide were used as substrates by T. maritima MraY with comparable efficiencies in vitro (12). This observation implies that the unusual d-Lys-containing peptide stems are likely to be translocated to the periplasmic face of the cytoplasmic membrane and to participate in peptidoglycan polymerization. Therefore, we have determined here the fine structure of T. maritima peptidoglycan and we have shown that l-Lys- and d-Lys-containing peptide stems are both present in the polymer, the latter being involved in the formation of two novel types of peptidoglycan cross-link.  相似文献   

15.
The rate at which the postjunctional membrane of muscle fibers becomes desensitized to the action of carbamylcholine is increased after the muscle has been soaked in solutions containing increased concentrations of calcium. Some further aspects of this effect of calcium were investigated by measuring changes in the input resistance of single fibers of the frog sartorius during local perfusion of the neuromuscular junction with 2.73 x 10-3 M carbamylcholine in isolated muscles immersed in 165 mM potassium acetate. It was found that (a) sudden changes in the local concentration of calcium brought about by perfusing fibers with carbamylcholine solutions containing 20 mM calcium, 40 mM oxalate, or 40 mM EDTA were followed within 20 sec by marked changes in the rate of desensitization; (b) prior to 13 sec after the introduction of carbamylcholine, however, no effect on the input resistance could be detected even though the muscle had been presoaked in 10 mM calcium; (c) the ability of high concentrations of calcium to bring about rapid desensitization disappears when a lower concentration of carbamylcholine (0.137 x 10-3 M) is applied to the muscle fiber. These findings suggest that calcium present in the extracellular fluid can act directly on the postjunctional membrane to promote the desensitization process and that an increased permeability of the membrane to calcium brought about by the presence of carbamylcholine is a factor which contributes to this action.  相似文献   

16.
According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm2 surface of sensory axons of the walking leg of lobster is 1.2 x 10-3 µM/hr. (σ = ± 0.3 x 10-3; SE = 0.17 x 10-3); the corresponding value for the motor axons isslightly higher: 1.93 x 10-3 µM/hr. (σ = ± 0.41 x 10-3; SE = ± 0.14 x 10-3). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 µM/hr. (σ = ± 73.5; SE = ± 32.6) versus 111.6 µM/hr. (σ = ± 28.3; SE = ± 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10-4 µM/mm2/hr. (σ = ± 0.96 x 10-4; SE = ± 0.4 x 10-4). (3) The Ch-esterase activity per mm2 surface of squid giant axon is 9.5 x 10-5 µM/hr. (σ = ± 1.55 x 10-5; SE = ± 0.38 x 10-5). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10-5 µM/mm2/hr. (σ = ± 3.24 x 10-5; SE = ± 0.93 x 10-5). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm2 per impulse.  相似文献   

17.
A Krebs-Henseleit (KH) medium made hypertonic by adding nonpermeant molecules substantially increased the isometric peak tension at steady-state contractions below 3 per sec in guinea pig atrium at 27°C. Action potential durations were decreased. KH plus 100 mM raffinose or sucrose resulted in similar and nearly maximal changes which were essentially reversible upon return to normal KH. When one active contracting atrium was used to passively stretch a second atrium, the difference in Ca ion exchange (1 min exchange with the extracellular space) between active and stretched atria significantly increased at 1 per sec and at 2 per sec in going from normal to 100 mM hypertonic KH. The calculated mean Ca ion cellular exchange per beat per 100 g of cells (a) doubled in changing from normal to 100 mM hypertonic KH, and (b) decreased slightly in changing from contractions of 1 per sec to 2 per sec in normal KH. These data are consistent with the hypothesis (a) that Ca ion entry per beat from the extracellular space is proportional to membrane depolarized time with a constant medium and a steady-state condition, and the hypothesis (b) that 100 mM hypertonicity doubles the Ca ion entry rate during depolarization. These data enable rejection of the hypothesis that the peak tension is proportional to the Ca ion entry per beat from the extracellular space under steady-state conditions, and suggest that any additional Ca ion involved in the larger contractions at higher frequencies comes from an increase in Ca ion available from intracellular stores.  相似文献   

18.
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.  相似文献   

19.
45Ca efflux was studied in resting anterior byssal retractor muscle. The data are described by a three-compartment system. The most rapidly exchanging compartment, with an average time constant of 7 min, contains about 0.9 mM Ca/liter muscle, and probably represents extracellular space. A second compartment, with a time constant of 83 ± 5 min, contains 1.2 mM Ca/liter, and may represent a membrane calcium store. The presence of a third, or more, compartments, probably representing sarcoplasmic reticulum and contractile proteins, is indicated by the fact that the final time constant is 10 times the 83 min time constant of the second compartment. Serotonin (5HT), on initial application, increases 45Ca efflux from this third compartment(s). This effect has a typical dose-response relationship with a maximum response appearing at 10-7 M5HT. In addition, removal of 5HT causes a secondary increase in 45Ca efflux which has a maximum at a 5HT concentration of 10-7 M and declines at both higher and lower doses.  相似文献   

20.
Caffeine and excitation-contraction coupling in the guinea pig taenia coli   总被引:7,自引:2,他引:5  
The effects of caffeine (0.2–10 mM) on the electrical and mechanical activities of guinea pig taenia coli were investigated with the double sucrose-gap method. Caffeine evoked a small tension with a latency of 20–30 sec, then phasic contraction developed and finally relaxation. The initial tension development also appeared in the Na-free solution without any marked changes in the membrane potential and membrane resistance. The phasic contraction disappeared in the Na-free solution. The relaxation in the presence of caffeine was accompanied by depolarization block of the spike generation. The minimum concentration of Ca ion needed to evoke the tension development by the caffeine was 10-7 M. Caffeine also potentiated the twitch tension below a concentration of 5 mM either in the Na-free solution or at low temperature (5°C). NO3 - and Br- showed a similar response to caffeine on the potentiation of the twitch tension at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号