首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
银杏雄配子体发生发育过程中的细胞分裂   总被引:7,自引:0,他引:7  
银杏(GinkgobilobaL.)小孢子母细胞减数分裂中,拟核经过规律性的变化后,初步建立了由近极面到远极面间的轴向极性,因而,雄配子体萌发时的3次分裂都是典型的极性平周分裂;这些极性平周分裂很可能是对原有极性的进一步加强;在结构上,各子细胞间的细胞壁缺少胞间连丝,因而,这些细胞壁可能起着使子细胞孤立化的作用,从而完成雄配子体中各细胞间的精细分化。生殖细胞的分裂很可能是斜背式环形分裂(anticlinalringlikedivision),这种分裂可能是对最初极性方向的重大调整。结果,精原细胞的分裂方向为垂周分裂,产生两个背靠背排列的精子。  相似文献   

2.
Asymmetric cell division is one of the most elegant biological systems by which cells create daughter cells with different functions and increase cell diversity. In particular, PAR polarity in the cell membrane plays a critical role in regulating the whole process of asymmetric cell division. Numerous studies have been conducted to determine the underlying mechanism of PAR polarity formation using both experimental and theoretical approaches in the last 10 years. However, they have mostly focused on answering the fundamental question of how this exclusive polarity is established but the precise dynamics of polarity domain have been little notified. In this review, I focused on studies on the shape, length, and location of PAR polarity from a theoretical perspective that may be important for an integrated understanding of the entire process of asymmetric cell division.  相似文献   

3.
Asymmetric cell division (ACD) is the fundamental process through which one cell divides into two cells with different fates. In animals, it is crucial for the generation of cell-type diversity and for stem cells, which use ACD both to self-renew and produce one differentiating daughter cell. One of the most prominent model systems of ACD, Drosophila neuroblasts, relies on the PAR complex, a conserved set of proteins governing cell polarity in animals. Here, we focus on recent advances in our understanding of the mechanisms that control the orientation of the neuroblast polarity axis, how the PAR complex is positioned, and how its activity may regulate division orientation and cell fate determinant localization and discuss how important findings about the composition polarity complexes in other models may apply to neuroblasts.  相似文献   

4.
During development one mechanism for generating different cell types is asymmetric cell division, by which a cell divides and contributes different factors to each of its daughter cells. Asymmetric cell division occurs through out the eukaryotic kingdom, from yeast to humans. Many asymmetric cell divisions occur in a defined orientation. This implies a cellular mechanism for sensing direction, which must ultimately lead to differences in gene expression between two daughter cells. In this review, we describe two classes of molecules: regulatory factors that are differentially expressed upon asymmetric cell division, and components of a signal transduction pathway that may define cell polarity. The lin-11 and mec-3 genes of C. elegans, the Isl-1 gene of mammals and the HO gene of yeast, encode regulatory factors that determine cell type of one daughter after asymmetric cell division. The CDC24 and CDC42 genes of yeast affect both bud positioning and orientation of mating projections, and thus may define a general cellular polarity. We speculate that molecules such as Cdc24 and Cdc42 may regulate expression of genes such as lin-11, mec-3, Isl-1 and HO upon asymmetric cell division.  相似文献   

5.
细胞不对称分裂是多细胞生物发育的基础。细胞不对称分裂的重要特征是细胞命运决定子在细胞分裂期间的不对称分离。细胞不对称分裂一般要经历4个步骤:在细胞中建立一个极性轴;沿此轴定向并形成纺锤体;细胞命运决定子沿极性轴作极性分布;细胞分裂后,不同的细胞命运决定子指导决定细胞的不同命运。  相似文献   

6.
In cell division of high-frequency-selfers in the ciliate Blepharisma japonicum, daughter cells are different in mating-type expression. The anterior daughter cell is mating type I. The posterior daughter cell is mating type II at first and then changes to mating type I after about 24 h. The anteroposterior polarity of predivision cells appears to correlate with the asymmetrical cell division. This work introduces a unicellular organism about the size of microscopic metazoa as a model system for the study of asymmetrical cell division, which is particularly important in developmental processes.  相似文献   

7.
Apical-basal polarity of epithelial cells is critical for their symmetric versus asymmetric division and commonly thought to be established in interphase. In a novel type of cell division termed "mirror-symmetric", apical cell constituents accumulate during M-phase at the cleavage furrow, resulting in epithelial daughter cells with opposite apical-basal polarity.  相似文献   

8.
A fertilised Caenorhabditis elegans embryo shows an invariable pattern of cell division and forms a multicellular body where each cell locates to a defined position. Mitotic spindle orientation is determined by several preceding events including the migration of duplicated centrosomes on a nucleus and the rotation of nuclear-centrosome complex. Cell polarity is the dominant force driving nuclear-centrosome rotation and setting the mitotic spindle axis in parallel with the polarity axis during asymmetric cell division. It is reasonable that there is no nuclear-centrosome rotation in symmetrically dividing blastomeres, but the mechanism(s) which suppress rotation in these cells have been proposed because the rotations occur in some polarity defect embryos. Here we show the nuclear-centrosome rotation can be induced by depletion of RPN-2, a regulatory subunit of the proteasome. In these embryos, cell polarity is established normally and both asymmetrically and symmetrically dividing cells are generated through asymmetric cell divisions. The nuclear-centrosome rotations occurred normally in the asymmetrically dividing cell lineage, but also induced in symmetrically dividing daughter cells. Interestingly, we identified RPN-2 as a binding protein of PKC-3, one of critical elements for establishing cell polarity during early asymmetric cell divisions. In addition to asymmetrically dividing cells, PKC-3 is also expressed in symmetrically dividing cells and a role to suppress nuclear-centrosome rotation has been anticipated. Our data suggest that the expression of RPN-2 is involved in the mechanism to suppress nuclear-centrosome rotation in symmetrically dividing cells and it may work in cooperation with PKC-3.  相似文献   

9.
Polarization predicts the pattern of cellularization in cereal endosperm   总被引:6,自引:0,他引:6  
Summary The endosperm of cereal grains develops as a multinucleate mass of wall-less cytoplasm (syncytium) that lines the periphery of the central cell before becoming cellular. The pattern of initial wall formation is precisely oriented and is followed by a round of precisely oriented formative cell division that gives rise to initials for the two tissues of endosperm. The initial anticlinal walls form at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubules emanating from nuclei in the syncytium. Polarized growth of the NCDs in axes perpendicular to the embryo sac wall and centripetal elongation of the anticlinal walls results in a single layer of open ended alveoli overtopped by the remaining syncytial cytoplasm. This arboreal stage, so named because the elongate nucleate columns of cytoplasm resemble an orchard of trees, predicts the division polarity of the imminent formative division. Mitosis occurs as a wave which, like polarization, moves in both directions from ventral to dorsal. Spindles are oriented parallel to the long axis of the alveoli and cell plates give rise to periclinal walls. The outer daughter nuclei (aleurone initials) are thus completely enclosed by walls and the inner nuclei (starchy endosperm initials) are in alveoli adjacent to the central vacuole.  相似文献   

10.
One mechanism to generate daughter cells with distinct fates is the asymmetric inheritance of regulatory proteins, leading to differential gene regulation in the daughter cells. This mode of cell division is termed 'asymmetric cell division.' The nervous system of the fly employs asymmetric cell division, both in the central nervous system, to generate neural precursors, neurons and glial cells; and in the peripheral nervous system, to create sensory organs that are composed of multiple cell types. These cell lineages are excellent models to examine the gene expression program that leads to fate acquisition, the cell-fate determinants that control these programs and how these determinants, in turn, are distributed through cell polarity machinery.  相似文献   

11.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.  相似文献   

12.
Summary Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division. divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all.  相似文献   

13.
Wodarz A  Gonzalez C 《Cell》2006,124(6):1121-1123
Two studies, one in this issue of Cell and the other in Developmental Cell show that the cell-fate determinant Brain Tumor (Brat) suppresses self-renewal in one of the daughter cells that arise from the asymmetric division of a neural stem cell. This work suggests a mechanism by which loss of polarity in stem cells may lead to tumorigenesis.  相似文献   

14.
The Drosophila protein Bazooka is required for both apical-basal polarity in epithelial cells and directing asymmetric cell division in neuroblasts. Here we show that the PDZ-domain protein DmPAR-6 cooperates with Bazooka for both of these functions. DmPAR-6 colocalizes with Bazooka at the apical cell cortex of epithelial cells and neuroblasts, and binds to Bazooka in vitro. DmPAR-6 localization requires Bazooka, and mislocalization of Bazooka through overexpression redirects DmPAR-6 to ectopic sites of the cell cortex. In the absence of DmPAR-6, Bazooka fails to localize apically in neuroblasts and epithelial cells, and is distributed in the cytoplasm instead. Epithelial cells lose their apical-basal polarity in DmPAR-6 mutants, asymmetric cell divisions in neuroblasts are misorientated, and the proteins Numb and Miranda do not segregate correctly into the basal daughter cell. Bazooka and DmPAR-6 are Drosophila homologues of proteins that direct asymmetric cell division in early Caenorhabditis elegans embryos, and our results indicate that homologous protein machineries may direct this process in worms and flies.  相似文献   

15.
不对称细胞分裂是动物发育过程中用以调控细胞分化的一种进化上保守的基本模式。极性的祖细胞通过不对称分裂产生两个不同命运的子细胞,这一过程涉及细胞命运决定因子的不对称分布、纺锤体的旋转定位等,而这些过程都必须依赖特定细胞极性的存在才能得以正常进行。简要综述了高度保守的蛋白复合物PAR/aPKC在细胞极性建立和维持中的重要作用,以及它如何调控纺锤体定位和命运决定因子不对称分配,并讨论了在该领域的一些新发现和研究进展。  相似文献   

16.
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.  相似文献   

17.
Polarity within lymphocytes has been recognized to regulate a variety of processes, including migration, signaling, and the execution of effector function. It has been recently proposed, however, that this polarized behavior may also serve a different purpose in lymphocytes that have not yet encountered their foreign antigen-to coordinate asymmetric cell division. Asymmetric division is an evolutionarily conserved mechanism allowing a single cell to give rise to two distinct daughter cells from inception. In this review, recent findings in polarity and asymmetric division in lymphocytes are discussed.  相似文献   

18.
B Lu  T Usui  T Uemura  L Jan  Y N Jan 《Current biology : CB》1999,9(21):1247-1250
The sensory bristles of the fruit fly Drosophila are organized in a polarized fashion such that bristles on the thorax point posteriorly. These bristles are derived from asymmetric division of sensory organ precursors (SOPs). The Numb protein, which is localized asymmetrically in a cortical crescent in each SOP, segregates into only one of the two daughter cells during cell division, thereby conferring distinct fates to the daughter cells [1] [2]. In neuroblasts, establishment of apical-basal polarity by the protein Inscuteable is crucial for orienting asymmetric division, but this is not the case for division of SOPs [3]. Instead, the Frizzled (Fz) protein mediates a planar polarity signal that controls the anteroposteriorly oriented first division (pl) of SOPs [4]. Here, we report that Flamingo (Fmi), a seven-transmembrane cadherin [5], controls the planar polarity of sensory bristles and the orientation of the SOP pl division. Both the loss of function and overexpression of fmi disrupted bristle polarity. During mitosis of the SOP, the axis of the pl division and the positioning of the Numb crescent were randomized in the absence of Fmi activity. Overexpression of Fmi and Fz caused similar effects. The dependence of proper Fmi localization on Fz activity suggests that Fmi functions downstream of Fz in controlling planar polarity. We also present evidence suggesting that Fz also functions in the Wingless pathway to pattern sensory organs.  相似文献   

19.
Creation of an embryonic fate map may provide insight into the patterns of cell division and specification contributing to the apical region of the early Arabidopsis embryo. A fate map has been constructed by inducing genetic chimerism during the two-apical-cell stage of embryogenesis to determine if the orientation of the first anticlinal cell division correlates with later developmental axes. Chimeras were also used to map the relative locations of precursors of the cotyledon and leaf primordia. Genetic chimeras were induced in embryos doubly heterozygous for a heat shock regulated Cre recombinase and a constitutively expressed beta-glucuronidase (GUS) gene flanked by the loxP binding sites for Cre. Individual cells in the two-apical-cell stage embryo responding to heat shock produce GUS-negative daughter cells. Mature plants grown from seed derived from treated embryos were scored for GUS-negative sector extent in the cotyledons and leaves. The GUS-negative daughters of apical cells had a strong tendency to contribute primarily to one cotyledon or the other and to physically adjacent true leaf margins. This result indicated that patterns of early cell division correlate with later axes of symmetry in the embryo and that these patterns partially limit the fates available for adoption by daughter cells. However, GUS-negative sectors were shared between all regions of the mature plant, suggesting that there is no strict fate restriction imposed on the daughters of the first apical cells.  相似文献   

20.
运用透射电镜对杜仲花粉发育进程进行了观察研究。结果显示,杜仲小孢子的第一次分裂为不等分裂,形成小的生殖细胞和大的营养细胞。分裂开始前小孢子的营养极形成许多小液泡,建立细胞极性;然后随着核膜的解体核周围的细胞器逐渐向纺锤体区靠近,围绕在纺锤体周围。花粉第一次有丝分裂完成后,生殖细胞所获得的细胞器开始分布在细胞的两侧,后来移向生殖细胞的营养极,而紧贴花粉壁的生殖极无细胞器分布。这种生殖细胞早期的细胞极性,可能为进一步分裂形成精细胞奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号