首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与西瓜野生种质抗枯萎病基因连锁的RAPD标记   总被引:23,自引:0,他引:23  
运用RAPD技术,采用混合分组分析(bulkedsegregantanalysis,BSA)方法进行了西瓜(Citrulluslanatus(Thunb.)Mansfeldvar. citroides) 野生种质PI296341 抗枯萎病基因连锁的分子标记研究。研究结果表明:西瓜野生种质P1296341 抗枯萎病生理小种1 的抗性由单显性基因控制,RAPD标记OPPOL/700 与其抗病基因连锁,其遗传距离为30 cM(centimorgan)。这为进行抗病分子标记辅助选择,以及最终定位与克隆其抗病基因打下了良好基础。  相似文献   

2.
西瓜抗枯萎病育种分子标辅助选择的研究   总被引:23,自引:1,他引:23  
将西瓜野生种质PI296341抗枯萎病生理小种1的抗性基因连锁的RAPD标记OPP01.700进行克隆、测序,Southern杂交证明此标记为1个单拷贝,并转化为SCAR标记,简化了SCAR扩增产物的检测技术。上述技术在抗病转育后代造反中得到了很好的应用,初步建立了西瓜抗枯萎病育种分子标记辅助选择技术系统。  相似文献   

3.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   

4.
单核苷酸多态性与甜瓜抗枯萎病分子育种研究   总被引:1,自引:0,他引:1  
目的:结合单核苷酸多态性标记技术,利用甜瓜本身的抗病性以解决新疆甜瓜病害问题。方法:对新疆甜瓜抗枯萎病基因Fom-2基因进行克隆分析,并根据Fom-2基因在不同抗性甜瓜亲本的单核苷酸多态性,设计检测SNP标记的PCR扩增引物,验证其多态性;并利用F2代分析该标记与筛选获得的甜瓜抗枯萎病基因连锁的SSR标记的遗传关系。结果:在抗病与感病甜瓜品种中均扩增获得PCR条带,试验中设计单核苷酸多态性分子标记在抗病品种为显性,与筛选的和抗枯萎病基因紧密连锁的共显性标记SSR430共分离。结论:不同抗性甜瓜品种均含有Fom-2基因或其高度同源序列,SNP显性标记和共显性标记SSR430均可用于甜瓜抗枯萎病分子标记辅助育种。  相似文献   

5.
The hypersensitive resistance to tomato spotted wilt virus (TSWV) in pepper is determined by a single dominant gene (resistant allele: Tsw) in several Capsicum chinense genotypes. In order to facilitate the selection for this resistance, four RAPD (among 250 10-mer primers tested) were found linked to the Tsw locus using the bulked segregant analysis and 153 F2 individuals. A close RAPD marker was converted into a codominant cleaved amplified polymorphic sequence (CAPS) using specific PCR primers and restriction enzymes. This CAPS marker is tightly linked to Tsw (0.9 +/- 0.6 cM) and is helpful for marker-assisted selection in a wide range of genetic intercrosses.  相似文献   

6.
This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.  相似文献   

7.
Fusarium wilt caused by Fusarium oxysporum f.sp. melonis is one of the most devastating diseases in melon production worldwide. The most effective control measure available is the use of resistant varieties. Identifying molecular markers linked to resistance genes can serve as a valuable tool for the selection of resistant genotypes. Bulked segregant analysis was used to identify markers linked to the Fom-2 genes, which confers resistance to races 0 and 1 of the fungal pathogen. Pooled DNA from homozygous resistant or homozygous susceptible progeny of F2 cross between MR-1 and AY was screened using 240 PstI/MseI and 200 EcoRI/MseI primer combinations to identify AFLP markers linked to Fom-2. Fifteen markers potentially linked to Fom-2 were identified, all with EcoRI/MseI primer pairs. These were mapped relative to Fom-2 in a backcross (BC) population of 60 progeny derived from MR-1 × AY with AY as recurrent parent. Two AFLP markers (ACT/CAT1 and AAC/CAT1) flanked the gene at 1.7 and 3.3 cM, respectively. Moreover, AFLP marker AGG/CCC and the previously identified RAPD marker 596-1 cosegregated with Fom-2. These two dominant markers were converted to co-dominant markers by designing specific PCR primers that produced product length polymorphisms between the parents. A survey of 45 melon genotypes from diverse geographic origins with the co-dominant markers demonstrated a high correlation between fragment size and the resistance phenotype. These markers may therefore be useful in marker-assisted breeding programs.  相似文献   

8.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

9.
The Yr17 gene, which is present in many European wheat cultivars, displays yellow rust resistance at the seedling stage. The gene introduced into chromosome 2A from Aegilops ventricosa was previously found to be closely linked (0.5 cM) to leaf and stem rust resistance genes Lr37 and Sr38, respectively. The objective of this study was to identify molecular markers linked to the Yr17 gene. We screened with RAPD primers, for polymorphism, the DNAs of cv. Thatcher and the leaf rust-resistant near-isogenic line (NIL) RL 6081 of cv. Thatcher carrying the Lr37 gene. Using a F2 progeny of the cross between VPM1 (resistant) and Thésée (susceptible), the RAPD marker OP-Y15580 was found to be closely linked to the Yr17 gene. We converted the OP- Y15580 RAPD marker into a sequence characterized amplified region (SCAR). This SCAR marker (SC-Y15) was linked at 0.8 ± 0.7 cM to the Yr17 resistance gene. We tested the SC-Y15 marker over a survey of 37 wheat cultivars in order to verify its consistency in different genetic backgrounds and to explain the resistance of some cultivars against yellow rust. Moreover, we showed that the Xpsr150-2Mv locus marker of Lr gene described by Bonhomme et al. [6] which possesses A. ventricosa introgression on the 2A chromosome was also closely linked to the Yr17 gene. Both the SCAR SC-Y15 and Xpsr150-2Mv markers should be used in breeding programmes in order to detect the cluster of the three genes Yr17, Lr37 and Sr38 in cross progenies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Fusarium wilt (FW) is one of the most economically damaging cotton diseases worldwide, causing yellowing, wilting, defoliation, vascular tissue damage and ultimately death. Identification of molecular markers linked to FW genes is vital to incorporate resistance into elite cotton cultivars. An intraspecific F2 in Gossypium hirsutum L. was developed by crossing with a highly resistant cultivar Zhongmiansuo 35 (ZMS35) and a susceptible cultivar Junmian 1 to screen simple sequence repeats (SSRs) closely linked to the FW resistance gene. FW was identified in F2:3 families by evaluating seedling leaf symptoms and vascular tissue damage at plant maturity under natural field infection conditions over 2 years. The results showed that FW resistance segregated in a 3:1 ratio as a simple monogenic trait in F2:3 families. Molecular mapping identified a FW resistance gene closely linked with the SSR marker JESPR304−280 in chromosome D3(c17). We proposed to name this gene FW R . A composite interval mapping method detected four QTLs for FW resistance in Chr.A7(c7), D1(c15), D9(c23) and D3, respectively. Among them, one major QTL (LOD > 20) was tagged near marker JESPR304 within an interval of 0.06–0.2 cM, and explained over 52.5–60.9% of the total phenotypic variance. The data confirmed the existence of a major gene in Chr.D3. This is the first report of molecular mapping of a major gene contributing FW resistance in cotton. The present research therefore provides an opportunity to understand the genetic control of resistance to FW and conduct molecular marker-assisted selection breeding to develop FW resistant cultivars.  相似文献   

11.
The exploration of genetically superior accessions is the key source of germplasm conservation and potential breeding material for the future. To meet the demand of better yielding chickpea cultivars in Pakistan the present study was organized to select more stable and resistant lines from indigenous as well as exotic chickpea germplasm obtained from Plant Genetic Resource Institute (PGRI), National Agricultural Research Centre, Islamabad, Pakistan. For the identification and evaluation of chickpea wilt resistant lines against Fusarium oxysporum f. sp. ciceris (Schlechtends), the germplasm was tested in the field for the selection of wilt resistant lines and the PCR based molecular markers were investigated to use Marker Assisted Selection (MAS) for selection of the desirable cultivars. In field trial, 70 % accessions were resistant to wilt disease, while the remaining 30 % have shown susceptibility to the disease. A total of 5 RAPD and 15 SSR markers were screened for molecular based characterization of wilt response. The data of molecular markers were scored by the presence (1) and absence (0) of allele and subjected to statistical analysis. The analysis was based on coefficient of molecular similarity using UPGMA and sorted the germplasm into two groups based on disease response. Among the total used RAPD/SSR primers, only TA194 SSR marker showed linkage to wilt resistant locus at 85 % probability. The linkage of a marker was reconfirmed by receiver operating characteristic curve. The use of the sorted wilt resistant genotypes through SSR marker TA194 can make available ample prospect in MAS breeding for yield improvement of the crop in Pakistan.  相似文献   

12.
The inheritance of anthracnose resistance of the common bean ( Phaseolus vulgaris L.) differential cultivar G 2333 to Colletotrichum lindemuthianum races 73 and 89 was studied in crosses with the susceptible cultivar Rudá. The segregation ratios of 15 : 1 in the F2 and 3 : 1 in the backcrosses to Rudá indicate that for each of the races tested there are two independent resistance loci in G 2333. A random amplified polymorphic DNA (RAPD) molecular marker (OPH181200C) linked in resistance to race 73 was identified in a BC3F2:3 population derived from crosses between Rudá and G 2333. A RAPD molecular marker OPAS13950C, previously identified as linked to gene Co-42 , was also amplified in this population. Co-segregation analyses showed that these two markers are located at 5.6 (OPH181200C) and 11.2 (OPAS13950C) cM of the Co-42 gene. These markers were not present in BC1F2:3 plants resistant to race 89 indicating that this population carries a different resistance gene. DNA amplification of BC1F2:3 plants with RAPD molecular marker OPAB450C, previously identified as linked to gene Co-5 , indicated that this gene is present in this population.  相似文献   

13.
Sequence-tagged microsatellite site (STMS) and sequence-tagged site (STS) markers linked closely to Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea were identified, and linkage between three wilt resistance genes was elucidated. The resistance to race 3 in chickpea germplasm accession WR-315 was inherited as a single gene, designated foc-3, in 100 F7 recombinant inbred lines derived from the cross of WR-315 (resistant) × C-104 (susceptible). The foc-3 gene was mapped 0.6 cM from STMS markers TA96 and TA27 and STS marker CS27A. Another STMS marker, TA194, at 14.3 cM, flanked the gene on the other side. Linkage between foc-3 and two other chickpea wilt resistance genes, foc-1 (syn. h 1 ) and foc-4, was established. foc-3 was mapped 9.8 cM from foc-1 and 8.7 cM from foc-4, whereas foc-1 and foc-4 are closely linked at 1.1 cM. The identification of closely linked markers to resistance genes will facilitate marker-assisted selection for introgression of the race 3 resistance gene to susceptible chickpea lines.Communicated by H.C. Becker  相似文献   

14.
番茄抗青枯病基因的AFLP分子标记   总被引:12,自引:0,他引:12  
寿森炎  冯壮志  苗立祥  廖芳滨 《遗传》2006,28(2):195-199
用番茄高抗青枯病品种“T51A”与高感青枯病品种“T9230”配制杂交组合,接种鉴定其正反交F1代及F2代分离群体的青枯病发生情况。结果表明,T51A对青枯病的抗性属于细胞质遗传,受1对杂合基因加性控制。用64个EcoRI/seI引物组合对“T51A”、“T9230”两个亲本及其F2代抗病和感病基因池进行AFLP分析,共扩增出约4200条可分辨的带,其中2条为稳定的差异。用“T51A”和“T9230”杂交产生的F2代分离群体对2个特异条带与目的基因的遗传连锁性进行分析,发现特异条带AAG/CAT与暂定名为RRS-342的抗青枯病基因紧密连锁,二者之间的遗传距离为6.7 cM。将AAG/CAT片段回收、克隆和测序,成功地将其转化为SCAR标记,可以更加方便地用于对番茄青枯病基因的标记辅助选择。   相似文献   

15.
The gene Pi15 for resistance of rice to Magnaporthe grisea was previously identified as being linked to the gene Pii. However, there is a debate on the chromosomal position of the Pii gene, because it was originally mapped on chromosome 6, but recent work showed it might be located on chromosome 9. To determine the chromosomal location of the Pi15 gene, a linkage analysis using molecular markers was performed in a F2 mapping population consisting of 15 resistant and 141 susceptible plants through bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). Out of 20 microsatellite markers mapped on chromosomes 6 and 9 tested, only one marker, RM316 on chromosome 9, was found to have a linkage with the Pi15 gene with a recombination frequency of (19.1 ± 3.7)%. To confirm this finding, four sequence-tagged site (STS) markers mapped on chromosome 9 were tested. The results suggested that marker G103 was linked to the Pi15 gene with a recombination frequency of (5.7 ± 2.1)%. To find marker(s) more closely linked to the Pi15 gene, random amplified polymorphic DNA (RAPD) analysis was performed. Out of 1 000 primers tested, three RAPD markers, BAPi15486, BAPi15782 and BAPi15844 were found to tightly flank the Pi15 gene with recombination frequencies of 0.35%, 0.35% and 1.1%, respectively. These three RAPD markers should be viewed as the starting points for marker-aided gene pyramiding and cloning. A new gene cluster of rice blast resistance on chromosome 9 was also discussed.  相似文献   

16.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

17.
Mechanisms of resistance to rice stripe disease in a Chinese rice cultivar (Oryza sativa L., cv. Zhendao 88) were determined, and molecular markers for the resistance gene were identified. Single tillers at the seedling stage were inoculated with Rice stripe virus (RSV) and its vector, the small brown planthopper (SBPH) Laodelphax striatellus Fallen, to test for non‐preference and antibiosis. The inheritance of resistance in the F2 and F2 : 3 lines from the cross cvs Zhendao 88× Wuyujing No. 3 was also examined by single‐tiller inoculation. Cv. Zhendao 88 was highly resistant to RSV and weakly resistant to SBPH. The resistance gene was mapped by SSR and RAPD analyses to rice chromosome 11 within 4.7 cm of a SSR marker RM229 and a RAPD marker OPO11. Data and inheritance analysis indicated that rice stripe disease resistance in cv. Zhendao 88 was derived principally from resistance to RSV and controlled by a single dominant gene. Breeding for rice stripe resistance could be accelerated by using cv. Zhendao 88 as a resistant parent if the linked marker for virus resistance were used in a marker‐assisted progeny selection programme.  相似文献   

18.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

19.
 The inheritance of an inter-simple-sequence-repeat (ISSR) polymorphism was studied in a cross of cultivated chickpea (Cicer arietinum L.) and a closely related wild species (C. reticulatum Lad.) using primers that anneal to a simple repeat of various lengths, sequences and non-repetitive motifs. Dinucleotides were the majority of those tested, and provided all of the useful banding patterns. The ISSR loci showed virtually complete agreement with expected Mendelian ratios. Twenty two primers were used for analysis and yielded a total of 31 segregating loci. Primers based on (GA)n repeats were the most abundant while primers with a (TG)n repeat gave the largest number of polymorphic loci. Nucleotides at the 5′ and 3′ end of the primers played an important role in detecting polymorphism. All the markers showed dominance. We found an ISSR marker linked to the gene for resistance to fusarium wilt race 4. The marker concerned, UBC-855500, was found to be linked in repulsion with the fusarium wilt resistance gene at a distance of 5.2 cM. It co-segregated with CS-27700, a RAPD marker previously shown to be linked to the gene for resistance to fusarium wilt race 1, and was mapped to linkage group 6 of the Cicer genome. This indicated that genes for resistance to fusarium wilt races 1 and 4 are closely linked. The marker UBC-855500 is located 0.6 cM from CS-27700 and is present on the same side of the wilt resistance gene. To our knowledge this is the first report of the utility of an ISSR marker in gene tagging. These markers may provide valuable information for the development of sequence-tagged microsatellite sites (STMS) at a desired locus. Received: 10 August 1997 / Accepted: 6 October 1997  相似文献   

20.
Anthracnose, caused by Colletotrichum graminicola, infects all aerial parts of sorghum, Sorghum bicolor (L.) Moench, plants and causes loss of as much as 70%. F1 and F2 plants inoculated with local isolates of C. graminicola indicated that resistance to anthracnose in sorghum accession G 73 segregated as a recessive trait in a cross with susceptible cultivar HC 136. To facilitate the use of marker-assisted selection in sorghum breeding programs, a PCR-based specific sequence characterized amplified region (SCAR) marker was developed. A total of 29 resistant and 20 susceptible recombinant inbred lines (RILs) derived from a HC 136 × G 73 cross was used for bulked segregant analysis to identify a RAPD marker closely linked to a gene for resistance to anthracnose. The polymorphism between the parents HC 136 and G 73 was evaluated using 84 random sequence decamer primers. Among these, only 24 primers generated polymorphism. On bulked segregant analysis, primer OPA 12 amplified a unique band of 383 bp only in the resistant parent G 73 and resistant bulk. Segregation analysis of individual RILs showed the marker OPA 12383 was 6.03 cM from the locus governing resistance to anthracnose. The marker OPA 12383 was cloned and sequenced. Based on the sequence of cloned RAPD product, a pair of SCAR markers SCA 12-1 and SCA 12-2 was designed using the MacVector program, which specifically amplified this RAPD fragment in resistant parent G 73, resistant bulk and respective RILs. Therefore, it was confirmed that SCAR marker SCA 12 is at the same locus as RAPD marker OPA 12383 and hence, is linked to the gene for resistance to anthracnose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号