首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大豆花叶病毒(SMV) 在大豆( Glycine max L.) 上引起严重病害。利用RT_PCR 扩增并克隆了SMV_ZK( 一个中国SMV 分离株) 基因组中全部蛋白质编码区的cDNA。通过对HC_PRO、NIb 和CP编码区进行序列测定与分析,发现SMV_ZK 与SMV_G2 高度同源,从而在分子水平上证明在我国大豆作物中存在SMV_G2 类似株系。将SMV_ZKcDNA克隆于细菌表达载体,获得并提纯了6 种cDNA 的表达产物。这项工作将为进一步研究SMV 基因组的功能奠定基础。  相似文献   

2.
Resistance to Soybean mosaic virus (SMV) in soybean is conferred by three dominant genes: Rsv1, Rsv3 and Rsv4. Over the years, scientists in the USA have utilized a set of standard pathotypes, SMV‐G1 to SMV‐G7, to study interaction with Rsv‐genotype soybeans. However, these pathotypes were isolated from a collection of imported soybean germplasm over 30 years ago. In this study, 35 SMV field isolates collected in recent years from 11 states were evaluated for gain of virulence on soybean genotypes containing individual Rsv genes. All isolates were avirulent on L78‐379 (Rsv1), whereas 19 were virulent on L29 (Rsv3). On PI88788 (Rsv4), 14 of 15 isolates tested were virulent; however, only one was capable of systemically infecting all of the inoculated V94‐5152 (Rsv4). Nevertheless, virulent variants from 11 other field isolates were rapidly selected on initial inoculation onto V94‐5152 (Rsv4). The P3 cistrons of the original isolates and their variants on Rsv4‐genotype soybeans were sequenced. Analysis showed that virulence on PI88788 (Rsv4) was not associated, in general, with selection of any new amino acid, whereas Q1033K and G1054R substitutions were consistently selected on V94‐5152 (Rsv4). The role of Q1033K and G1054R substitutions, individually or in combination, in virulence on V94‐5152 (Rsv4) was confirmed on reconstruction in the P3 cistron of avirulent SMV‐N, followed by biolistic inoculation. Collectively, our data demonstrate that SMV has evolved virulence towards Rsv3 and Rsv4, but not Rsv1, in the USA. Furthermore, they confirm that SMV virulence determinants on V94‐5152 (Rsv4) reside on P3.  相似文献   

3.
4.
5.
Soybean mosaic virus (SMV), a potyvirus, is the most prevalent and destructive viral pathogen in soybean-planting regions of China. Moreover, other potyviruses, including bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), also threaten soybean farming. The eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in controlling resistance/susceptibility to potyviruses in plants. In the present study, much higher SMV-induced eIF4E1 expression levels were detected in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting the involvement of eIF4E1 in the response to SMV by the susceptible cultivar. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that soybean eIF4E1 interacted with SMV VPg in the nucleus and with SMV NIa-Pro/NIb in the cytoplasm, revealing the involvement of VPg, NIa-Pro, and NIb in SMV infection and multiplication. Furthermore, transgenic soybeans silenced for eIF4E were produced using an RNA interference approach. Through monitoring for viral symptoms and viral titers, robust and broad-spectrum resistance was confirmed against five SMV strains (SC3/7/15/18 and SMV-R), BCMV, and WMV in the transgenic plants. Our findings represent fresh insights for investigating the mechanism underlying eIF4E-mediated resistance in soybean and also suggest an effective alternative for breeding soybean with broad-spectrum viral resistance.  相似文献   

6.
Chowda-Reddy RV  Sun H  Hill JH  Poysa V  Wang A 《PloS one》2011,6(11):e28342

Background

Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general.

Methodology/Principal Findings

To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively.

Conclusions/Significance

Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV.  相似文献   

7.
大豆花叶病毒研究进展   总被引:4,自引:0,他引:4  
孙浩华  薛峰  陈集双 《生命科学》2007,19(3):338-345
大豆花叶病毒(Soybean mosaic virus,SMV)病是在世界范围内广泛分布并普遍发生的病毒病害之一,导致大豆严重减产和种质衰退。这引起了国内外许多学者的科研兴趣,研究内容涉及SMV株系划分与发生分布、传播流行方式、寄主上的症状和影响因素、基因组结构组成及各基凶功能、植物生理生化抗性、大豆SMV抗性遗传育种等各方面。本文综述了近年来国内外SMV的科研方向和进展,旨在为进一步的研究提供依据。  相似文献   

8.
The multigenic Rsv1 locus in the soybean plant introduction (PI) ‘PI96983’ confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV‐N, but not SMV‐G7 and SMV‐G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as ‘Williams82’ (rsv1), SMV‐N induces severe disease symptoms and accumulates to a high level, whereas both SMV‐G7 and SMV‐G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV‐N on Rsv1‐genotype soybean requires concurrent mutations in both the helper‐component proteinase (HC‐Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide‐binding leucine‐rich repeat (NB‐LRR) class, within the Rsv1 locus, independently mediating the recognition of HC‐Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV‐N on Rsv1‐genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV‐N, in Williams82 (rsv1). Furthermore, the evaluation of SMV‐N‐derived HC‐Pro and P3 chimeras, containing homologous sequences from virulent SMV‐G7 or SMV‐G7d strains, as well as SMV‐N‐derived variants containing HC‐Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC‐Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1‐genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC‐Pro, but not in P3.  相似文献   

9.
Cell-free translation products from isolates representing soybean mosaic virus (SMV) strains G1 to G7 and G7a, along with several other SMV isolates, were analyzed. SMV RNAs were translated in both rabbit reticulocyte lysates and wheat germ extracts, yielding approximately 20 translation products for each strain from each translation system. Comparison of translation profiles by the presence or absence of proteins allowed for the formation of distinctive groups from each cell-free translation system. Groupings formed by analysis of products from rabbit reticulocyte lysates correlated with pathogenicity; groupings formed by analysis of products from wheat germ extracts had no apparent biological significance.  相似文献   

10.
Soybean cultivar J05 was identified to be resistant to the most virulent strain of soybean mosaic virus (SMV) in northeastern China. However, the reaction of J05 to SMV strains in the United States of America is unknown, and genetic information is needed to utilize this germplasm in a breeding program. The objectives of this study were to determine the reaction of J05 to all US strains of SMV (G1-G7), the inheritance of SMV resistance in J05, and the allelic relationship of resistance genes in J05 with other reported resistance genes. J05 was crossed with susceptible cultivar Essex (rsv) to study the inheritance of SMV resistance. J05 was also crossed with PI 96983 (Rsv1), L29 (Rsv3), and V94-5152 (Rsv4) to test the allelism of resistance genes. F(2) populations and F(2:3) lines from these crosses were inoculated with G1 or G7 in the greenhouse. Inheritance and allelism studies indicate that J05 possesses 2 independent dominant genes for SMV resistance, one at the Rsv1 locus conferring resistance to G1 and necrosis to G7 and the other at the Rsv3 locus conditioning resistance to G7 but susceptibility to G1. The presence of both genes in J05 provides resistance to G1 and G7. J05 is unique from the previous sources that carry 2 genes of Rsv1Rsv3 and will be useful in breeding for SMV resistance.  相似文献   

11.
Soybean mosaic virus (SMV) was adapted for transgene expression in soybean and used to examine the function of avirulence genes avrB and avrPto of Pseudomonas syringae pvs. glycinea and tomato, respectively. A cloning site was introduced between the P1 and HC-Pro genes in 35S-driven infectious cDNAs of strains SMV-N and SMV-G7. Insertion of the uidA gene or the green fluorescent protein gene into either modified cDNA and bombardment into primary leaves resulted in systemic expression that reflected the pattern of viral movement into uninoculated leaves. Insertion of avrB blocked symptom development and detectable viral movement in cv. Harosoy, which carries the Rpg1-b resistance gene corresponding to avrB, but not in cvs. Keburi or Hurrelbrink, which lack Rpg1-b. In Keburi and Hurrelbrink, symptoms caused by SMV carrying avrB appeared more quickly and were more severe than those caused by the virus without avrB. Insertion of avrPto enhanced symptoms in Harosoy, Hurrelbrink, and Keburi. This result was unexpected because avrPto was reported to confer avirulence on P. syringae pv. glycinea inoculated to Harosoy. We inoculated Harosoy with P syringae pv. glycinea expressing avrPto, but observed no hypersensitive reaction, avrPto-dependent induction of pathogenesis-related protein la, or limitation of bacterial population growth. In Hurrelbrink, avrPto enhanced bacterial multiplication and exacerbated symptoms. Our results establish SMV as an expression vector for soybean. They demonstrate that resistance triggered by avrB is effective against SMV, and that avrB and avrPto have general virulence effects in soybean. The results also led to a reevaluation of the reported avirulence activity of avrPto in this plant.  相似文献   

12.
The gene symbol Rsv2 was previously assigned to the gene in the soybean [Glycine max (L.) Merr.] line OX670 for resistance to soybean mosaic virus (SMV). The Rsv2 gene was reported to be derived from the Raiden soybean (PI 360844) and to be independent of Rsv1. Accumulated data from our genetic experiments were in disagreement with this conclusion. In this study, Raiden and L88-8431, a Williams BC5 isoline with SMV resistance derived from Raiden, were crossed with two SMV-susceptible cultivars to investigate the mode of inheritance of SMV resistance in Raiden. They were also crossed with five resistant cultivars to examine the allelomorphic relationships of the Raiden gene with other reported genes at the Rsv1 locus. F1 plants, F2 populations, and F2-derived F3 (F2:3) lines were tested with SMV strains G1 or G7 in the greenhouse or in the field. The individual plant reactions were classified as resistant (R, symptomless), necrotic (N, systemic necrosis), or susceptible (S, mosaic). The F2 populations from R x S crosses segregated in a ratio of 3 (R + N):1 S and the F2:3 lines from Lee 68 (S) x Raiden (R) exhibited a segregation pattern of 1 (all R):2 segregating:1 (all S). The F2 populations and F2:3 progenies from all R x R crosses did not show any segregation for susceptibility. These results demonstrate that the resistance to SMV in Raiden and L88-8431 is controlled by a single dominant gene and the gene is allelic to Rsv1. The heterozygous plants from R x S and R x N crosses exhibited systemic necrosis when inoculated with SMV G7, indicating a partial dominance nature of the resistance gene. Raiden and L88-8431 are both resistant to SMV G1-G4 and G7, but necrotic to G5, G6, and G7A. Since the resistance gene in Raiden is clearly an allele at the Rsv1 locus and it exhibits a unique reaction to the SMV strain groups, assignment of a new gene symbol, Rsv1-r, to replace Rsv2 would seem appropriate. Further research is ongoing to investigate the possible existence of the Rsv2 locus in OX670 and its relatives.  相似文献   

13.
The modification of avirulence factors of plant viruses by one or more amino acid substitutions converts avirulence to virulence on hosts containing resistance genes. Limited experimental studies have been conducted on avirulence/virulence factors of plant viruses, in particular those of potyviruses, to determine whether avirulence/virulence sites are conserved among strains. In this study, the Soybean mosaic virus (SMV)–Rsv4 pathosystem was exploited to determine whether: (i) avirulence/virulence determinants of SMV reside exclusively on P3 regardless of virus strain; and (ii) the sites residing on P3 and crucial for avirulence/virulence of isolates belonging to strain G2 are also involved in virulence of avirulent isolates belonging to strain G7. The results confirm that avirulence/virulence determinants of SMV on Rsv4‐genotype soybean reside exclusively on P3. Furthermore, the data show that sites involved in the virulence of SMV on Rsv4‐genotype soybean vary among strains, with the genetic composition of P3 playing a crucial role.  相似文献   

14.
There are seven pathotypes of soybean mosaic virus (SMV) representing seven strain groups (G1-G7) in the United States. Soybean genotypes [Glycine max (L.) Merr.] may exhibit resistant (R), susceptible (S), or necrotic (N) reactions upon interacting with different SMV strains. This research was conducted to investigate whether reactions to two SMV strains are controlled by the same gene or by separate genes. Two SMV-resistant soybean lines, LR1 and LR2, were crossed with the susceptible cultivar Lee 68. LR1 contains a resistance gene Rsv1-s and is resistant to strains G1-G4 and G7. LR2 contains the Rsv4 gene and is resistant to strains G1-G7. Two hundred F(2:3) lines from LR1 x Lee 68 and 262 F(2:3) lines from LR2 x Lee 68 were screened for SMV reaction. Seeds from each F2 plant were randomly divided into two subsamples. A minimum of 20 seeds from each subsample were planted in the greenhouse and plants were inoculated with either G1 or G7. G1 is the least virulent, whereas G7 is the most virulent strain of SMV. The results showed that all the F(2:3) lines from both crosses exhibited the same reaction to G1 and G7. No recombinants were found in all the progenies for reactions to G1 and G7 in either cross. The results indicate that reactions to both G1 and G7 are controlled by either the same gene or very closely linked genes. This research finding is valuable for studying the resistance mechanism and interactions of soybean genotypes and SMV strains and for breeding SMV resistance to multiple strains.  相似文献   

15.
Soybean mosaic virus (SMV), a species of the Potyvirus genus in the Potyviridae family, is one of the most typical viral diseases and results in yield and quality loss of cultivated soybean. Due to the depletion of genetic resources for resistance breeding, a trial of genetic transformation to improve disease resistance has been performed by introducing the SMV-CP gene by the RNA interference (RNAi) method via Agrobacterium-mediated transformation. Among 30 transgenic plants produced, 7 lines with enough seeds were infected with SMV and two lines (3 and 4) showed viral resistance to SMV infection. In genomic Southern blot analysis, all the lines tested contained at least one T-DNA insertion. Subsequent investigation confirmed that no viral CP gene expression was detected in two SMV-resistant lines after artificial inoculation of SMV, while non-transgenic control and other transgenic lines expressed substantial amounts of the viral gene. Viral symptoms affected seed morphology, and clean seeds were harvested from the resistant lines. Also, strong viral gene expression was detected from the seeds of susceptible lines. In further generations, the same phenotypic appearance was maintained among non-transgenic and transgenic plants. Finally, the presence of helper component-proteinase (HC-Pro), known as a suppressor of gene silencing apparatus, was checked among transgenic lines. No expression of HC-Pro in resistant lines indicated that the viral CP-RNAi transformation into soybean somehow created a functional gene silencing system and resulted in a viral-resistant phenotype.  相似文献   

16.
Several strains of soybean mosaic virus (SMV) can be differentiated on the basis of the phenotypic response of various soybean cultivars (e.g., the soybean line Williams ‘82 is susceptible to all SMV strains, whereas the lines P. I. 96983, L78-379, and Davis are functionally immune to SMV strain G2 but susceptible to strains G7 and G7a). Inoculation of the immune lines with G2, followed 2 days later by inoculation with G7 or G7a, resulted in systemic spread of the avirulent SMV G2. Further evidence, suggests that complementation groups of SMV strains may exist.  相似文献   

17.
18.
19.
RNA沉默是真核生物体内由病毒来源的干扰小RNA(virus derived small interfering RNA, vsiRNA)沉默复合物介导目标RNA特异降解的一种保守机制,通过对vsiRNA分析可进行植物病毒病原鉴定。本文利用小RNA深度测序技术对感病半夏叶片进行鉴定,结果发现,表现典型花叶症状的半夏叶片受到大豆花叶病毒(Soybean mosaic virus, SMV)、黄瓜花叶病毒(Cucumber mosaic virus, CMV)、芋花叶病毒(Dasheen mosaic virus, DsMV)、魔芋花叶病毒(Konjac mosaic virus, KoMV)、烟草花叶病毒(Tobacco mosaic virus, TMV)等多种病毒的复合侵染。为明确SMV山西半夏分离物(SMV-SXBX)的进化关系,进行SMV-SXBX全基因组克隆与分析,获得SMV-SXBX全长为9 735 nt,编码一个由3 105个氨基酸组成的多聚蛋白质。通过核苷酸与氨基酸序列比对发现,SMV-SXBX与半夏分离物P同源性最高,分别为91.1%和94.1%,且系统发育分析表明,SMV-SXBX与半夏SMV分离物P聚为一簇。同时,也对vsiRNA进行了系统分析,研究结果有望为半夏SMV的有效防治提供一定科学依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号