首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
何萍  金继运 《Acta Botanica Sinica》1999,41(11):1221-1225
通过离体玉米(ZeamaysL.)叶片培养和叶肉质膜微囊45Ca2 吸收等实验,探索春玉米叶片衰老过程中激素变化、Ca2 跨膜运输及膜脂过氧化三者之间的联系。结果认为,玉米叶片衰老的可能过程首先是内源激素含量变化,继而影响到Ca2 跨膜运输,进而导致膜脂过氧化,由此引起叶绿素和蛋白质降解。  相似文献   

2.
The ability to maintain the cytoplasmic Ca2+ concentration ([Ca2+]cyt) at homeostatic levels has been examined during leaf senescence in detached parsley (Petroselinum crispum) leaves. Fluorescence ratiometric imaging of mesophyll cells isolated from parsley leaves at various senescence stages and loaded with the Ca2+ indicator fura-2 has revealed a distinct elevation of [Ca2+]cyt, which was positively correlated with the progress of leaf senescence. This initial increase of [Ca2+]cyt, which was first observed in cells isolated from 3-d-senescent leaves, occurred 1 d before or in parallel with changes in two established senescence parameters, chlorophyll loss and lipid peroxidation. However, the [Ca2+]cyt elevation followed by 2 d the initial increase in the senescence-associated proteolysis. Whereas the [Ca2+]cyt of nonsenescent cells remained at the basal level, the elevated [Ca2+]cyt of the senescent cells was a long-lasting effect. Experimental retardation of senescence processes, achieved by pretreatment of detached leaves with the cytokinin benzyladenine, resulted in maintenance of homeostatic levels of [Ca2+]cyt in cells isolated from 3-d-senescent leaves. These observations demonstrate for the first time to our knowledge a correlation between elevated [Ca2+]cyt and the process of senescence in parsley leaves. Such senescence-associated elevation of [Ca2+]cyt, which presumably results from a loss of the cell's capability to extrude Ca2+, may serve as a signal inducing subsequent deteriorative processes.  相似文献   

3.
Net fluxes of H+, K+ and Ca2+ ions from maize (Zea mays L.) isolated leaf segments were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). Leaf segments were isolated from the blade base, containing actively elongating cells (basal segments), and from non-growing tip regions (tip segments). Ion fluxes were measured in response to bright white light (2600 micromoles m-2 s-1) from either the leaf segments or the underlying mesophyll (after stripping the epidermis). Fluxes measured from the mesophyll showed no significant difference between basal and tip regions. In leaf segments (epidermis attached), light-induced flux kinetics of all ions measured (H+, Ca2+ and K+) were strikingly different between the two regions. It appears that epidermal K+ fluxes are required to drive leaf expansion growth, whereas in the mesophyll light-induced K+ flux changes are likely to play a charge balancing role. Light-stimulated Ca2+ influx was not directly attributable either to leaf photosynthetic performance or to leaf expansion growth. It is concluded that light-induced ion flux changes are associated with both leaf growth and photosynthesis.  相似文献   

4.
Treatment of cultured neonatal cardiomyocytes with ethacrynic acid (EA) induced a rapid depletion of glutathione (GSH) that preceded a gradual elevation of cytosolic Ca2+ (monitored by phosphorylase a activation), a loss of protein thiols, and a marked inactivation of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (G3PD). A subsequent decline of mitochondrial transmembrane potential (delta psi) and ATP occurred prior to the onset of lipid peroxidation which closely paralleled a loss of cardiomyocyte viability. The antioxidant N,N'-diphenyl-p-phenylenediamine prevented lipid peroxidation and cell death but had no effect on elevated cytosolic Ca2+, delta psi loss, GSH depletion, or G3PD inactivation. Pretreatment with the iron chelator, deferoxamine, decreased both lipid peroxidation and cell death. EA-induced lipid peroxidation and cell damage were also diminished by preincubation with acetoxymethyl esters of the Ca2+ chelators Quin-2 and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid, even though cytosolic Ca2+ remained elevated. The extent of GSH depletion was unaltered by either chelator; however, Quin-2 did protect G3PD from inactivation by EA. An inhibitor of the mitochondrial respiratory chain, antimycin A, decreased EA-induced lipid peroxidation and cell death but had no effect on thiol depletion or elevated cytosolic Ca2+. These data suggest that cardiomyocyte thiol status may be linked to intracellular Ca2+ homeostasis and that peroxidative damage originating in the mitochondria is a major event in the onset of cell death in this cardiomyocyte model of thiol depletion.  相似文献   

5.
During in vitro senescence (chlorophyll loss) of oat ( Avena sativa L. cv. Victory) leaf segments and of leaf discs of Rumex obtusifolius L, the activity of catalase decreases and lipid peroxidation increases. The activity of superoxide dismutase (SOD) decreases in Rumex leaf discs but changes little in oat leaf segments. Kinetin treatment of oat leaf segments, and GA3 treatment of Rumex leaf discs, inhibit decline in the enzyme activities and increase in the level of lipid peroxidation and strongly inhibit senescence. In either leaf tissue a treatment with ethanol or vitamin E (scavengers of free radicals) or with diphenylisobenzofuran (scavenger of singlet oxygen) results in a strong inhibition of lipid peroxidation and senescence, but does not affect much the decline in the SOD and catalase activities. It is concluded that, i) senscence-associated lipid peroxidation is induced by free radicals and singlet oxygen; and, ii) kinetin and GA3 inhibit senescence mainly by a modulation of lipid peroxidation through maintaining high levels of such cellular scavengers as SOD and catalase.  相似文献   

6.
Two types of segments (intact leaf tissue and isolated mesophyll tissue respectively) were isolated from basal (still growing) and tip (non-growing) maize leaf regions. The leaf segments were exposed to different light qualities (blue or red light) and quantities, and net fluxes of K+, Ca2+ and H+ were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). A clear dose dependency of all ion flux responses on both red (RL) and blue (BL) light fluence rate was found. We provide evidence that light-induced K+ flux kinetics are different between growing and non-growing tissues and attribute this difference to the direct involvement of RL-induced K+ flux in turgor-driven leaf expansion growth controlled by the epidermis, as well as to the charge-balancing role of K+ in the leaf mesophyll. Generally, BL was much more efficient in stimulating K+ uptake in the growing basal region compared with RL. We also show a much stronger influence of RL on Ca2+ fluxes in the basal region compared with BL, which argues in favor of the importance of RL in Ca2+ signaling during leaf growth.  相似文献   

7.
Enzymatic and non-enzymatic lipid peroxidation has been implicated in programmed cell death, which is a major process of leaf senescence. To test this hypothesis we developed a high-performance liquid chromatography (HPLC) method for a simultaneous analysis of the major hydro(pero)xy polyenoic fatty acids. Quantities of lipid peroxidation products in leaves of different stages of development including natural senescence indicated a strong increase in the level of oxygenated polyenoic fatty acids (PUFAs) during the late stages of leaf senescence. Comprehensive structural elucidation of the oxygenation products by means of HPLC, gas chromatography/mass spectrometry and (1)H nuclear magnetic resonance suggested a non-enzymatic origin. However, in some cases a small share of specifically oxidized PUFAs was identified suggesting involvement of lipid peroxidizing enzymes. To inspect the possible role of enzymatic lipid peroxidation in leaf senescence, we analyzed the abundance of lipoxygenases (LOXs) in rosette leaves of Arabidopsis. LOXs and their product (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid were exclusively detected in young green leaves. In contrast, in senescing leaves the specific LOX products were overlaid by large amounts of stereo-random lipid peroxidation products originating from non-enzymatic oxidation. These data indicate a limited contribution of LOXs to total lipid peroxidation, and a dominant role of non-enzymatic lipid peroxidation in late stages of leaf development.  相似文献   

8.
Reactive oxygen species play a crucial role for various physiological and developmental processes in plants. Here, we report a spatial pattern of oxidative stress and antioxidant defence within maize leaf. Localization of hydrogen peroxide in different region of leaf clearly exhibits well-defined increasing pattern of accumulation from the base to the leaf tip. Lipid peroxidation, an index of oxidative damage, also showed a similar pattern-like hydrogen peroxide that is lowest at the base and highest at the leaf tip. NADPH oxidase, an enzyme responsible for superoxide anion generation, showed highest activity in the leaf tip and least in the leaf base regions. Superoxide dismutase (SOD) activity was increased from the base to the leaf tip. Peroxidases, DAB-peroxidase (DAB-POD) and guaiacol-peroxidase (G-POD), catalase (CAT) and glutathione reductase (GR) also showed increases in their activities from the base to the leaf tip. Ascorbate peroxidase (APX), however, showed a reverse trend—highest at the base and least in the leaf tip. The decrease in APX and increases in the activities of other antioxidant enzymes SOD, CAT, DAB-POD, G-POD and GR along with H2O2 and lipid peroxidation, ascorbate/dehydroascorbate and non-protein thiol levels from the base to the leaf tip clearly exhibit a spatial pattern prior to the onset of visible signs of senescence in the maize leaf.  相似文献   

9.
With wheat leaves as material, the changes of superoxide dismutase (SOD), lipid peroxi-dation and membrane permeability during leaf senescence in light or dark, and treated withphytohormones (KT or ABA) have been studied. The changes of chlorophyll content, lipidperoxidation and fine structure of spinach chloroplasts senescing in light or dark have alsobeen studied. When leaves senesce in light, the activity of SOD increased at first then decreased. The increase of SOD activity was able to result from the synthesis of new protein. Lightwas found to delay the leaf senescence obviously but also accelerate leaf senescence by causinglipid peroxidation when prolonged the illumination time. The delay or acceleration of leafsenescence by exogenous hormones were observed, it may be due to the control of lipid peroxi-dation by adjusting the activity of SOD. O2-participated the chlorophyll decomposition andlipid peroxidation during chloroplasts senesce in light. A favourable role of light in mainta-lng the fine structure of isolated chloroplasts was clear.  相似文献   

10.
水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系   总被引:102,自引:0,他引:102  
研究了从抽穗开花到籽粒成熟过程中,水稻植株顶部三片叶子的超氧物歧化酶(SOD),脂质过氧化产物丙二醛(MDA)含量及二磷酸核酮糖羧化酶活性的变化。实验结果表明:叶片的衰老伴随着 SOD 活性、RuBP 羧化酶活性及叶绿素含量的降低、丙二醛含量显著增高。分离了三个 SOD 的同工酶,证明为 Cu—Zn SOD。观察了 SOD 同工酶在叶片老化及酶液存放不同时间中的变化。讨论了叶片衰老过程中氧自由基对酶及质膜的损伤影响。  相似文献   

11.
Using a pulse radiolysis approach to generate and observe superoxide anions (O2-.) in the absence and presence of calcium, we have attempted to verify the recent hypothesis of Babizhayev (Arch. Biochem. Biophys. 266, 446-451, 1988) of a Ca2(+)-O2-. interaction during lipid peroxidation. We could not observe rapid scavenging of O2-. or complex formation with Ca2+ to account for an inhibitory effect of this cation on lipid peroxidation. Neither could we agree that the stimulatory effect is due to liberation of catalytic ferrous iron from weak complexes by Ca2+. Drawing on reports in the literature, we propose an alternate explanation for the apparent stimulation of lipid peroxidation by low Ca2+ concentrations. In our view, this is not a direct effect, but reflects independently initiated processes of lipid peroxidation and Ca2+ translocation, which interact subsequently in a synergistic manner. The reported inhibition at high Ca2+ concentrations is considered an artifact as it was observed at levels far in excess of those relevant to animal systems (but not necessarily in some plant compartments).  相似文献   

12.
Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and grown with nutrient solution without nitrogen. A second group was not inoculated and these were grown on complete nutrient solution containing nitrogen. Leaf senescence was evident at 11 weeks in both sets of plants as determined by decreases in leaf chlorophyll and protein. However, a marked decrease in photosynthesis was observed in nodulated plants at 9 weeks. Losses in the leaf ascorbate pool preceded leaf senescence, but leaf glutathione decreased only during the senescence phase. Large decreases in dehydroascorbate reductase and catalase activities were observed after 9 weeks, but the activities of other antioxidant enzymes remained high even at 11 weeks. The extent of lipid peroxidation, the number of protein carbonyl groups and the level of H(2)O(2) in the leaves of both nitrate-fed and nodulated plants were highest at the later stages of senescence. At 12 weeks, the leaves of nodulated plants had more protein carbonyl groups and greater lipid peroxidation than the nitrate-fed controls. These results demonstrate that the leaves of nodulated plants undergo an earlier inhibition of photosynthesis and suffer enhanced oxidation during the senescence phase than those from nitrate-fed plants.  相似文献   

13.
燕麦叶片衰老与活性氧代谢的关系   总被引:15,自引:0,他引:15  
燕麦连体叶片与高体叶片衰老中,过氧化氢酶和超氧物歧化酶(SOD)活性下降,脂类过氧化产物丙二醛(MDA)迅速积累,组织自动氧化速率显著加快。植物激素BA,GA_3,2,4—D及光、亚胺环己酮(CH),EDTA处理均不同程度地延缓离体叶片的衰老过程,同时抑制过氧化氢酶和SOD活性下降,阻止MDA的积累和组织自动氧化速率的提高.推测叶片衰老中活性氧起着重要的作用。  相似文献   

14.
Different parameters which vary during the leaf development in sunflower plants grown with nitrate (2 or 20 mM) for a 42‐day period have been determined. The plants grown with 20 mM nitrate (N+) showed greater leaf area and specific leaf mass than the plants grown with 2 mM nitrate (N?). The total chlorophyll content decreased with leaf senescence, like the photosynthetic rate. This decline of photosynthetic activity was greater in plants grown with low nitrogen level (N?), showing more pronounced senescence symptoms than with high nitrogen (N+). In both treatments, soluble sugars increased with aging, while starch content decreased. A significant increase of hexose to sucrose ratio was observed at the beginning of senescence, and this raise was higher in N? plants than in N+ plants. These results show that sugar senescence regulation is dependent on nitrogen, supporting the hypothesis that leaf senescence is regulated by the C/N balance. In N+ and N? plants, ammonium and free amino acid concentrations were high in young leaves and decreased progressively in the senescent leaves. In both treatments, asparagine, and in a lower extent glutamine, increased after senescence start. The drop in the (Glu+Asp)/(Gln+Asn) ratio associated with the leaf development level suggests a greater nitrogen mobilization. Besides, the decline in this ratio occurred earlier and more rapidly in N? plants than in N+ plants, suggesting that the N? remobilization rate correlates with leaf senescence severity. In both N+ and N? plants, an important oxidative stress was generated in vivo during sunflower leaf senescence, as revealed by lipid peroxidation and hydrogen peroxide accumulation. In senescent leaves, the increase in hydrogen peroxide levels occurred in parallel with a decline in the activity of antioxidant enzymes. In N+ plants, the activities of catalase and ascorbate peroxidase (APX) increased to reach their highest values at 28 days, and later decreased during senescence, whereas in N? plants these activities started to decrease earlier, APX after 16 days and catalase after 22 days, suggesting that senescence is accelerated in N‐leaves. It is probable that systemic signals, such as a deficit in amino acids or other metabolites associated with the nitrogen metabolism produced in plants grown with low nitrogen, lead to an early senescence and a higher oxidation state of the cells of these plant leaves.  相似文献   

15.
Calcium influx through voltage-dependent calcium channels (VDCCs) mediates a variety of functions in neurons and other excitable cells, but excessive calcium influx through these channels can contribute to neuronal death in pathological settings. Oxyradical production and membrane lipid peroxidation occur in neurons in response to normal activity in neuronal circuits, whereas excessive lipid peroxidation is implicated in the pathogenesis of of neurodegenerative disorders. We now report on a specific mechanism whereby lipid peroxidation can modulate the activity of VDCCs. The lipid peroxidation product 4-hydroxy-2,3-nonenal (4HN) enhances dihydropyridine-sensitive whole-cell Ca2+ currents and increases depolarization-induced increases of intracellular Ca2+ levels in hippocampal neurons. Prolonged exposure to 4HN results in neuronal death, which is prevented by treatment with glutathione and attenuated by the L-type Ca2+ channel blocker nimodipine. Tyrosine phosphorylation of alpha1 VDCC subunits is increased in neurons exposed to 4HN, and studies using inhibitors of tyrosine kinases and phosphatases indicate a requirement for tyrosine phosphorylation in the enhancement of VDCC activity in response to 4HN. Phosphorylation-mediated modulation of Ca2+ channel activity in response to lipid peroxidation may play important roles in the responses of neurons to oxidative stress in both physiological and pathological settings.  相似文献   

16.
Erythrocytes of diabetic subjects (non-insulin dependent) were found to have eight- to ten-fold higher levels of endogenously formed thiobarbituric acid reactive malonyldialdehyde (MDA), thirteen-fold higher levels of phospholipid-MDA adduct, 15-20% reduced Na(+)-K(+)-ATPase activity with unchanged Ca+2-ATPase activity, as compared with the erythrocytes from normal healthy individuals. Incubation of normal erythrocytes with elevated concentrations (15-35 mM) of glucose, similar to that present in diabetic plasma, led to the increased lipid peroxidation, phospholipid-MDA adduct formation, reduction of Na(+)-K(+)-ATPase (25-50%) and Ca+2-ATPase (50%) activities. 2-doxy-glucose was 80% as effective as glucose in the lipid peroxidation and lipid adduct formation. However, other sugars, such as fructose, galactose, mannose, fucose, glucosamine and 3-O-methylmannoside, and sucrose, tested at a concentration of 35 mM, resulted in reduced (20-30%) lipid peroxidation without the formation of lipid-MDA adduct. Kinetic studies show that reductions in Na(+)-K(+)-ATPase and Ca+2-ATPase activities precede the lipid peroxidation as the enzyme inactivation occur within 30 min of incubation of erythrocytes with high concentration (15-35 mM) of glucose, while lipid peroxidation product, MDA appears at 4 hr and lipid-MDA adducts at 8 hr. The lipoxygenase pathway inhibitors, 5,8,11-eicosatriynoic acid and Baicalein (5,6,7-trihydroxyflavone), reduced the glucose-induced lipid peroxidation by 30% and MDA-lipid adduct formation by 26%. Indomethacin, a cyclooxygenase pathway inhibitor, had no discernible effect on the lipid peroxidation in erythrocytes. However, the inhibitors of lipid peroxidation, 3-phenylpyrazolidone, metyrapone, and the inhibitors of lipoxygenase pathways did not ablate the glucose-induced reduction of Na(+)-K(+)-ATPase and Ca+2-ATPase activities in erythrocytes. Erythrocytes produce 15-HETE (15-hydroxy-eicosatetraenoic acid), which is augmented by glucose. These results suggest that the formation of lipoxygenase metabolites potentiate the glucose-induced lipid peroxidation and that the inactivation of Na(+)-K(+)-ATPase and Ca+2-ATPase occurs as a result of non-covalent interaction of glucose with these enzymes.  相似文献   

17.
To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz y?ld?z?) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.  相似文献   

18.
本文研究了激动素对韭菜离体叶片衰老的影响与活性氧代谢的关系。结果表明,在暗诱导衰老过程中抗坏血酸、谷胱甘肽含量和超氧物岐化酶、过氧化氢酶活性均呈下降趋势。激动素在延缓衰老的同时,明显抑制了抗坏血酸、谷胱甘肽含量和超氧物岐化酶、过氧化氢酶活性的下降以及膜脂过氧化产物丙二醛的积累。证明激动素延缓衰老的作用是通过调节活性氧代谢来实现的。  相似文献   

19.
It is shown that in case of antioxidant insufficiency (AOI) activation of NADPH- and ascorbate-dependent lipid peroxidation (LPO) in sarcoplasmic reticulum (SR) of skeletal muscles proceeds 1.7 and 4.1 times faster, respectively. Activation of lipid peroxidation in AOI leads to damage of Ca2+ transport processes in SR of skeletal muscles. Under these conditions ATP-dependent accumulation of 45Ca (by 88%) and Ca(2+)-ATPase (by 14%) activity in SR of skeletal muscles falls. In case of AOI a significant disturbance of passive Ca2+ transport in SR of skeletal muscles takes place, being characterized by an increased passive 45Ca output from vesicles due to breakage of the biomembrane permeability as a result of lipid peroxidation of membranes. Treatment of animals with ionol, a synthetic antioxidant, causes a decrease of activated NADPH- and ascorbate-dependent LPO in SR of skeletal muscles and stabilization of Ca2+ transport processes.  相似文献   

20.
Accumulation of Ca2+ by rat liver mitochondria in the presence of inorganic phosphate results in spontaneous activation of respiration accompanied by a progressive loss of the accumulated cation. The lipid peroxidation inhibitor, ionol, completely prevents and reverses the Ca2+/phosphate-induced loss of accumulated Ca2+ and restores the respiration to state 4 level without having any effect on the rate of Ca2+ accumulation and respiration in the presence of an uncoupler. No correlation between the ionol-dependent loss of Ca2+ and the formation of malonic dialdehyde in mitochondria was found. The measurements of delta psi across the inner mitochondrial membrane during a progressive loss of Ca2+ suggest that the Ca2+/phosphate-induced "uncoupling" is mainly due to the appearance of electrogenic fluxes (but not Ca2+ cycling) which is under control of some products of initial steps of lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号