首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical approach using fractal concepts is presented for modeling the binding and dissociation interactions between analytes and nuclear estrogen receptors (ER) occurring on surface plasmon resonance biosensor chip surfaces. A kinetic knowledge of the binding interactions mediated by ER would help in better understanding the carcinogenicity of these steroidogenic compounds and assist in modulating these reactions. The fractal approach is applied to analyte-ER interaction data obtained from literature. Numerical values obtained for the binding and dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor surface. For example, a single-fractal analysis is used to describe the binding and dissociation phases for the binding of estradiol and ERalpha in solution to clone 31 protein immobilized on a biosensor chip (C-S. Suen et al., 1998, J. Biol. Chem. 273(42), 27645-27653). The binding and the dissociation rate coefficients are 27.57 and 8.813, respectively, and the corresponding fractal dimensions are 1.986 and 2.268, respectively. In some examples dual-fractal models were employed to obtain a better fit of either the association or the dissociation phases or for both. Predictive relationships are developed for (a) the binding and the dissociation rate coefficients as a function of their respective fractal dimensions and (b) the ratio K(A) (= k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). The analysis should provide further physical insights into the ER-mediated interactions occurring on biosensor and other surfaces.  相似文献   

2.
The concept of fractal dimension is applied to protein surfaces. Satellite tobacco necrosis virus, prealhumin, retinol binding protein and lysozyme have been studied. A residue fractal index has been defined, which provides a suitable colour code when using computer graphics for visualizing surfaces. Some provisions are made that render the MS algorithm useful to calculate protein surface fractal dimensions. It has been found that a correlation exists between regions of high fractal dimension and those involved in protein-protein interactions. The usefulness of surface fractality in this context is demonstrated by a molecular docking experiment.  相似文献   

3.
基于分形理论的木材顺纹理断裂研究   总被引:1,自引:0,他引:1  
研究5种木材顺纹理断裂性质和断面分形特征,测量断口表面的分形维数,建立了分形维数与断裂韧性间的关系.研究结果表明:(1)不同树种因其构造差异对裂纹扩展的阻力不同,这种差异同样也表现在材料断裂表面的形貌特征上;(2)木材顺纹理断裂韧性K(IC)^(TL)与分形维数D之间有很高的正比关系:y=0.036x+2.162,(R^2=0.98),揭示了断口分形维数与材料性能之间的内在联系.  相似文献   

4.
The fractal nature microbial aggregates is a function of the type of microorganism and mixing conditions used to develop aggregates. We determined fractal dimensions from length-projected area (D(2)) and length-number scaling (D(3)) relationships. Aggregates of Zoogloea ramigera developed in rotating test tubes were both surface and mass fractals, with fractal dimensions of D(2) = 1.69 +/- 0.11 and D(3)= 1.79 +/- 0.28 (+/-standard deviation), respectively. When we grew this bacteria in a bench-top fermentor, aggregates maintained their surface fractal characteristics (D(2) = 1.78 +/- 0.11) but lost their mass fractal characteristics (D(3) = 2.99 +/- 0.36). Yeast aggregates (Saccharomyces cerevisae) grown in rotating tests tubes had higher average fractal dimensions than bacterial aggregates grown under physically identical conditions, and were also considered fractal (D(2) = 1.92 +/- 0.08 and D(3) = 2.66 +/- 0.34). Aggregates porosity can be expressed in term of a fractal dimensions, but average porosities are higher than expected. The porosities of yeast aggregates (0.9250-0.9966) were similar to porosities of bacterial aggregates (0.9250-0.9966) cultured under the same physical conditions, although bacterial aggregates developed in the reactor had higher average porosities (0.9857-0.9980). These results suggest that that scaling relationships based on fractal geometry may be more useful than equations derived from Euclidean geometry for quantifying the effects of different fluid mechanical environments on aggregates morphology and characteristics such as density, porosity, and projected surface area.  相似文献   

5.
6.
Surface fractality of proteins from theory and NMR data   总被引:1,自引:0,他引:1  
Different approaches to study protein surface fractality are considered. An approach based on analysis of surface versus molecular weight dependence is shown to be an informative tool for investigation of protein surface behaviour. An evidence for protein surface fractality, obtained with the use of this analysis from the data of both NMR measurements in protein solutions and computer analysis of protein structures, is presented. Obtained value of fractal dimension of protein surface (ds congruent to 2.2) is in a good agreement with the results of conventional approach (with variation of yardstick length) to protein surface fractality. A conclusion is made that surface enlargement due to the rise of protein molecular weight is accompanied by the increase of maximum scale of irregularities on protein surface. Possible effect of surface fractality on hydrodynamic characteristics of protein molecules in solution is discussed.  相似文献   

7.
Seafloor topographic complexity is ecologically important because it provides habitat structure and alters boundary-layer flow over the bottom. Despite its importance, there is little agreement on how to define and measure surface complexity. The purpose of this investigation was to utilize fractal geometry of vertical cross-section profiles to characterize the surface topography of the soft-bottom mussel bed (Mytilus edulis L.) at Bob's Cove, ME, USA. Mussels there have been shown previously to have spatially ordered fractal characteristics in the horizontal plane. Two hypotheses were tested. The first was that the bed surface is fractal over the spatial scale of 1.44-200 mm, with fractal dimension less than or equal to 1.26, the value for the Koch curve, our model for bed profiles. The second was that bed surface topography (i.e., in vertical profile) is less complex than the mussel bed spatial pattern (i.e., aerial view in the horizontal plane). Both hypotheses were supported. Cross-sections of plaster casts of the bed produced 88 surface profiles, all of which were fractal over the entire spatial scale of more two orders of magnitude employed in the analysis. Fractal dimension values (D) for individual profiles ranged from 1.031 to 1.310. Fractal dimensions of entire casts ranged up to mean (1.242+/-0.046) and median (1.251) values similar to 1.26, the theoretical value of the Koch curve. The bed surface was less complex than the bed spatial pattern because every profile had D<1.36, the smallest value previously obtained from aerial views of the bed. The investigation demonstrated for the first time that surface topography of a soft-bottom mussel bed was fractal at a spatial scale relevant to hydrodynamic processes and habitat structure important for benthic organisms. The technique of using cross-section profiles from casts of the bed surface avoided possible underestimates of fractal dimension that can result from other profiling methods reported in the literature. The results demonstrate that fractal dimension can be useful in the analysis of habitat space and water flow over any irregular seafloor surface because it incorporates the size, shape, and scale of roughness elements into a simple, numerical metric.  相似文献   

8.
Analysis of fractal dimension of O2A glial cells differentiating in vitro   总被引:2,自引:0,他引:2  
Fractal dimension is a quantitative measure of morphological complexity. Glial cells of the oligodendrocyte-type 2 astrocyte (O2A) lineage exhibit increasing morphological complexity as they differentiate in vitro. Enriched populations of O2A progenitor cells isolated from neonatal rat cerebral hemispheres or optic nerves were allowed to differentiate in vitro, and their fractal dimensions were measured over time. The fractal dimensions of the maturing cells correlated with perceived complexity; cells with elaborate process branching had larger fractal dimensions than cells with a simpler morphology. An analysis of changes in fractal dimension revealed distinct rates of growth for both oligodendrocytes and type 2 astrocytes. The fractal dimension remained constant over a 10-fold range in optical magnification, demonstrating that cultured O2A glial cells exhibit self-similarity, a defining characteristic of fractal objects. These results illustrate that fractal dimension analysis of maturing cell populations is a useful method for quantitatively describing the process of cell differentiation.  相似文献   

9.
Microbial growth patterns described by fractal geometry.   总被引:6,自引:0,他引:6       下载免费PDF全文
M Obert  P Pfeifer    M Sernetz 《Journal of bacteriology》1990,172(3):1180-1185
Fractal geometry has made important contributions to understanding the growth of inorganic systems in such processes as aggregation, cluster formation, and dendritic growth. In biology, fractal geometry was previously applied to describe, for instance, the branching system in the lung airways and the backbone structure of proteins as well as their surface irregularity. This investigation applies the fractal concept to the growth patterns of two microbial species, Streptomyces griseus and Ashbya gossypii. It is a first example showing fractal aggregates in biological systems, with a cell as the smallest aggregating unit and the colony as an aggregate. We find that the global structure of sufficiently branched mycelia can be described by a fractal dimension, D, which increases during growth up to 1.5. D is therefore a new growth parameter. Two different box-counting methods (one applied to the whole mass of the mycelium and the other applied to the surface of the system) enable us to evaluate fractal dimensions for the aggregates in this analysis in the region of D = 1.3 to 2. Comparison of both box-counting methods shows that the mycelial structure changes during growth from a mass fractal to a surface fractal.  相似文献   

10.
A fractal analysis of a confirmative nature only is presented for cellular analyte-receptor binding kinetics utilizing biosensors. Data taken from the literature can be modeled by using a single-fractal analysis. Relationships are presented for the binding rate coefficient as a function of the fractal dimension and for the analyte concentration in solution. In general, the binding rate coefficient is rather sensitive to the degree of heterogeneity that exists on the biosensor surface. It is of interest to note that examples are presented where the binding coefficient, k exhibits an increase as the fractal dimension (D(f)) or the degree of heterogeneity increases on the surface. The predictive relationships presented provide further physical insights into the binding reactions occurring on the surface. These should assist in understanding the cellular binding reaction occurring on surfaces, even though the analysis presented is for the cases where the cellular "receptor" is actually immobilized on a biosensor or other surface. The analysis suggests possible modulations of cell surfaces in desired directions to help manipulate the binding rate coefficient (or affinity). In general, the technique presented is applicable for the most part to other reactions occurring on different types of biosensor or other surfaces.  相似文献   

11.
A fractal analysis of DNA binding and dissociation kinetics on biosensor surfaces is presented. The fractal approach provides an attractive, convenient method to model the kinetic data taking into account the effects of surface heterogeneity brought about by ligand immobilization. The fractal technique can be used in conjunction or as an alternate approach to conventional modeling techniques, such as the Langmuir model, saturation model, etc. Examples analyzed include a DNA molecular beacon biosensor and a plasmid DNA-(cationic polymer) interaction biosensor. The molecular beacon example provides some insights into the nature of the surface and how it influences the binding rate coefficients. The DNA-cationic polymer interaction example provides some quantitative results on the binding and dissociation rate coefficients. Data taken from the literature may be modeled, in the case of binding, using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis results indicate a change in the binding mechanism as the reaction progresses on the surface. A single-fractal analysis is adequate to model the dissociation kinetics in the example presented. Relationships are presented for the binding rate coefficients as a function of their corresponding fractal dimension, D(f), which is an indication of the degree of heterogeneity that exists on the surface. When analyte-receptor binding is involved, an increase in the heterogeneity of the surface (increase in D(f)) leads to an increase in the binding rate coefficient.  相似文献   

12.
S A Islam  D L Weaver 《Proteins》1991,10(4):300-314
Three types of polypeptide surface area (contact, accessible, and molecular) have been studied as a function of the radius of a probe sphere used to map the surface. The surfaces are: (1) three alpha-helices, the H-helix of myoglobin, the E-helix of leghemoglobin, and an artificial polyalanine helix, each with 26 residues; (2) two globins, myoglobin and leghemoglobin, each with 153 residues; and (3) a two-center model system for which the three types of surface area have been calculated analytically. The two globin helices have almost identical surface areas as a function of probe size as do the two globins. The polyalanine helix surface area is smaller but similar in shape to the globin helix areas. All three helix contact areas tend to the same limit as the probe size increases, and the globin contact areas behave similarly. Fractal dimensions were calculated for the helix and globin contact and molecular surfaces. All fractal dimensions showed strong dependence on probe size. The contact fractal dimension peaks at larger values for both the helices and globins. Most residues do not make contact with large probes (15 A).  相似文献   

13.
Abstract

Different approaches to study protein surface fractality are considered. An approach based on analysis of surface versus molecular weight dependence is shown to be an informative tool for investigation of protein surface behaviour. An evidence for protein surface fractality, obtained with the use of this analysis from the data of both NMR measurements in protein solutions and computer analysis of protein structures, is presented. Obtained value of fractal dimension of protein surface (d s ? 2.2) is in a good agreement with the results of conventional approach (with variation of yardstick length) to protein surface fractality. A conclusion is made that surface enlargement due to the rise of protein molecular weight is accompanied by the increase of maximum scale of irregularities on protein surface. Possible effect of surface fractality on hydrodynamic characteristics of protein molecules in solution is discussed.  相似文献   

14.
Spatial scaling theory (SST) relates the physical structure of the environment to species coexistence and community assembly. Although SST is a recognized theory in ecology, few studies have evaluated its predictions, producing contradictory results and frequently failing to meet its assumptions. In addition, the ‘risk predictions’ of SST regarding an increase in species similarity with body size and the dependence of this pattern on the landscape and food fractal dimensions have not been evaluated. This study attempted to account for previous limitations, analyzing these predictions in coleopteran guilds that inhabit 18 temporary ponds. This metacommunity covers a large gradient of environmental variables, including food density, the landscape fractal dimension, the food fractal dimensions and other indicators of pond heterogeneity. Average similarity in carnivorous and herbivorous body sizes systematically increased with guild richness, fulfilling classical predictions of niche theory. Species similarity was associated with body size, but the association reverts from negative to positive as the landscape fractal dimension and heterogeneity increases, a pattern further supported by null model analyses. Several nonexclusive mechanisms may account for this pattern: 1) the body size-dependent landscape perception, through which small animals detect more heterogeneity than larger animals; 2) the reaching of landscape limits by larger species, which prevents them from accessing novel largest clusters; 3) the large differences between the landscape and food fractal dimensions; and 4) the homogenization of the landscape when an integer fractal dimension is reached. These mechanisms may dictate that smaller organisms are more able to capitalize on heterogeneity or available resources than larger organisms, thus promoting increased similarity among smaller species. The presented results support the connection between landscape spatial structure and biodiversity and a mechanistic understanding of this connection from the SST.  相似文献   

15.
凉山半细毛羊初生重性状分形特征分析   总被引:1,自引:0,他引:1  
吴辉生  吴登俊  周明亮  张翔宇 《遗传》2008,30(10):1319-1325
首次以非线性理论中的分形理论对凉山半细毛羊的初生重数据进行分析, 计算了1996~2004年间初生重性状的信息维数、关联维数、无标度区及性状测度范围。结果表明: (1) 从1996~2004年凉山半细毛羊的初生重性状的信息维数都集中在0.66529~0.90675, 而且无标度区较大, 测度范围广。该结果说明, 每年羔羊初生重信息维数都较大, 群体存在十分丰富的变异, 变异范围广, 具有十分巨大的育种潜力; (2) 相应的关联维数则集中在0.62438~0.86528之间, 表明群体内个体遗传结构具有较强的相关性; (3) 这两个分形维数能够分别从两个不同的角度揭示群体遗传结构的分形特征。  相似文献   

16.
A fractal model for the characterization of mycelial morphology   总被引:1,自引:0,他引:1  
A new technique based on a fractal model has been developed for the quantification of the macroscopic morophology of mycelia. The morphological structuring is treated as a fractal object, and the fractal dimension, determined by an ultrasonic scattering procedure developed for the purpose, serves as a quantitative morphological index. Experimental observations reported earlier and simulations of mycelial growth, carried out using a probabilistic-geometric growth model developed for the purpose, both validate the applicability of the fractal model. In experiments with three different species, the fractal dimensions of pelletous structures were found to be in the range 1.45-2.0 and those of filamentous structures were in the range 1.9-2.7, with values around 2.0 representing mixed morphologies. Fractal dimensions calculated from simulated mycelia are in rough agreement with these ranges. The fractal dimension is also found to be relatively insensitive to the biomass concentration, as seen by dilution of the original broths. The relation between morphology and filtration properties of the broths has also been studied. The fractal dimension shows a strong correlation with the index of cake compressibility and with the Kozeny constant, two filtration parameters that are known to be morphology dependent. This technique could thus be used to develop correlations between the morphology, represented by the fractal dimension, and important morphology-dependent process variables. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
The roughness and irregularity of the surfaces in the protein and enzyme are fractal features that may be characterized by fractal dimensions and mass exponents. The surface fractal dimensions calculated by the variation method are different from those obtained by other methods, since the former is applicable to the self-affine system. Thus the results reported here are reliable for the surfaces. However, the fat fractal and multifractal features of proteins and enzymes are studied by simulation. The surface mass exponents are regarded as another kind of scaling exponent, and the spectrum f(alpha) provides further detailed information about the surfaces of enzyme and protein. The applications of the spectrum f(alpha) to the enzymatic reactions is also discussed.  相似文献   

18.
C A Long  J E Long 《Acta anatomica》1992,145(3):201-206
Two quite different shapes of cranial sutures ostensibly yield fractal dimensions. The rare, intricate sutures yield the more valid fractal dimensions because self-similar scaling provides a double-log plot of negative slope. These sutures are fractals over a range of several r values. Some of the highly folded, wavy sutures in humans also fill space except at very tiny values of r, but are nonfractal. A great deal depends on whether the dimension D is > 1 and by how much, whether the curve yields a false fractal dimension, whether the curve scales and shows self-similarity, and whether the scaling occurs regularly in the same pattern. We suggest careful attention to the inverse power law equations, which when misused can yield false fractal values. Cranial sutures vary from the simple wavy sutures to the complex folded ones, and, in rare instances, evolve and develop to the self-similar, scaling, elaborate ones called intricate sutures. The main thing is to express the biology precisely, whether waveform regularity or irregularity or scaling elaboration conserving space and the original shape. D values may not in themselves reliably allow such a distinction, by whatever method used.  相似文献   

19.
Methods of fractal geometry (Mandelbrot, 1983) are used here to analyse the relative complexity of the sagittal and lambdoid sutures visible in the skull fragment formed by parts of an occipital squame and parietals found in a sealed deposit at the early Lower Pleistocene site of Venta Micena (Orce, Granada, Spain), generally regarded as human bone but occasionally suggested as belonging to an equid. For comparison with the fossil, corresponding sutures of various primates (hominids, pongids and cercopithecids) and two other groups of mammals (equids and ruminants) were analysed using the computer program FRACTAL-D (Slice, 1989) in order to determine their fractal dimensions as a measure of differential sutural design complexity. The results show that the fractal dimension of the Venta Micena skull sutures lies within the range of variation for infant specimens of both modern and Plio-Pleistocene hominids. Sutural complexity in young pongids and cercopithecids overlaps the range of fractal dimensions found in hominids, whereas values obtained from equids and ruminants are significantly greater than those for all the primates analysed here. Therefore, in terms of fractal dimension measures of relative complexity, the sutures preserved in the Venta Micena fossil could not have belonged to an equid (pace Agusti & Moyà-Sola, 1987); rather, its fractal dimension is consistent with the attribution of the fossil to an infant of Homo sp.  相似文献   

20.
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg white apoA-I rHDL immobilized on a biosensor chip surface (1), native, mildly oxidized, and strongly oxidized LDL in solution to a heparin-modified Au-surface of a surface plasmon resonance (SPR) biosensor (2), and TRITC-labeled HDL in solution to a bare optical fiber surface (3). Single-and dual-fractal models were used to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (4). The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号