首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the fructose carrier over the membranes of Rhodopseudomonas sphaeroides was studied in cells grown under light saturation and light limitation. Three types of membranes were isolated after disruption of the cells in a French press. All three types were present in the cells grown either under the high or low light intensity, but they were present in different quantities. The cytoplasmic membrane could be separated from the photosynthetic membranes by Sephacryl S-1000 chromatography. The cytoplasmic membrane has the highest specific density and fructose carrier content and does not contain the light-harvesting pigments. The photosynthetic membranes could be resolved into two types by sucrose density gradient centrifugation. Type A predominates when cells are grown under light saturation, whereas type B, the chromatophores, is synthesized abundantly under light limitation. The properties of type A are in between the properties of the cytoplasmic membrane and the chromatophores. It has a slightly lower specific density and contains four times less fructose carrier than the cytoplasmic membrane, but contains half of the light-harvesting bacteriochlorophyll of the chromatophore membrane. The fructose carrier content in the type B membranes, the chromatophores, is very low.  相似文献   

2.
Growth of Chroomonas sp. increased with light intensity (100, 1800, and 2700 μW/cm2) with a fivefold increase from the lowest to the highest intensity. Chlorophyll and phycocyanin content per cell were greater in cells grown at low light intensity, but the ratio of chlorophyll a and c did not vary appreciably. Cells grown at low light intensity had 30% more phycocyanin than cells grown at high intensities of light. The chloroplast of cells with the higher phycocyanin content had average intrathyla-koidal widths of 300 Å, whereas those cells with the lower phycocyanin content had average intrathylakoidal widths of 200 Å. This result is compatible with the hypothesis that phycocyanin is located in the intrathylakoidal space in the cryptophyte algae. Of the various energy sources tested, only glycerol was able to support limited growth tinder nonphotosynthetic conditions. Under no condition was the chloroplast reduced to an elioplast or proplastid state. Starch accumulation was greatest in cells grown in continuous while light in glycerol. Eye-spots were commonest in cells grown in darkness and interrupted every 24 hr by a few seconds of white light. It was concluded that this organism is an obligate phototroph.  相似文献   

3.
Two types with regard to adaptation to different light intensities are described: tbe Chlorella type and the Cyclotella type. The Chlorella type is mostly found among the green algae, the Cyclotella type among the diatoms. The Chlorella type adapts to a new light intensity mainly by changing the pigment content. Therefore the cells adapted to a high light intensity have a lower chlorophyll a content per cell than cells adapted to a low light intensity. Light saturation is mostly rather low for cells adapted to low light intensities. The light-saturated rate of photosynthesisist mostly lower for cells adapted to a high light intensity than for cells adapted to a low light intensity. The actual photosynthesis is not much higher at a high light intensity than at a low one. The actual photosynthesis is the photosynthesis at the light intensity where the cells are grown. - The Cyclotella type adapts only by changing the light-saturated rate. The chlorophyll content is the same in cells grown at low and high light intensities. Light saturation for cells grown at a low light intensity is rather high. The light-saturated rate is much higher in the case examined at the high light intensity than at the low one. The actual photosynthesis is considerably higher for cells grown at the high light intensities than for cells grown at low light intensities.- The two adaptation types are not sharply separated since transition types occur.  相似文献   

4.
THE FINE STRUCTURE OF RHODOSPIRILLUM RUBRUM   总被引:25,自引:8,他引:17       下载免费PDF全文
The fine structure of Rhodospirillum rubrum grown under a series of defined conditions has been examined in thin sections prepared by the methods of Ryter and Kellenberger. In cells grown anaerobically at different light intensities, the abundance of 500 A membrane-bounded vesicles in the cytoplasm is inversely related to light intensity, and directly related to cellular chlorophyll content. When the chlorophyll content of the cell is low, the vesicles are exclusively peripheral in location; they extend more deeply into the cytoplasm when the chlorophyll content is high. Typical vesicles also occur, though rarely, in cells grown aerobically in the dark, which have a negligible chlorophyll content. When synthesis of the photosynthetic pigment system is induced in a population of aerobically grown cells by incubation under semianaerobic conditions in the dark, the vesicles become increasingly abundant with increasing cellular chlorophyll content, and the cells eventually acquire the cytoplasmic structure that is characteristic of cells growing anaerobically at a high light intensity. Poststaining with lead hydroxide reveals that the membranes surrounding the 500 A vesicles are indistinguishable in structure from the cytoplasmic membrane, and continuous with it in some areas of the sections. The bearing of these observations on current notions concerning the organization of the bacterial photosynthetic apparatus is discussed.  相似文献   

5.
Cells of Synechocystis sp. PCC 6803 lacking photosystem I (PSI-less) and containing only photosystem II (PSII) or lacking both photosystems I and II (PSI/PSII-less) were compared to wild type (WT) cells to investigate the role of the photosystems in the architecture, structure, and number of thylakoid membranes. All cells were grown at 0.5μmol photons m(-2)s(-1). The lumen of the thylakoid membranes of the WT cells grown at this low light intensity were inflated compared to cells grown at higher light intensity. Tubular as well as sheet-like thylakoid membranes were found in the PSI-less strain at all stages of development with organized regular arrays of phycobilisomes on the surface of the thylakoid membranes. Tubular structures were also found in the PSI/PSII-less strain, but these were smaller in diameter to those found in the PSI-less strain with what appeared to be a different internal structure and were less common. There were fewer and smaller thylakoid membrane sheets in the double mutant and the phycobilisomes were found on the surface in more disordered arrays. These differences in thylakoid membrane structure most likely reflect the altered composition of photosynthetic particles and distribution of other integral membrane proteins and their interaction with the lipid bilayer. These results suggest an important role for the presence of PSII in the formation of the highly ordered tubular structures.  相似文献   

6.
Rodobacter capsulatus cells, which were cultured anaerobically in high light intensity, had fewer foldings in the cytoplasmic membrane than those which were grown in lower light intensities. Spheroplast-derived membrane fractions obtained from cells cultured under high light intensity contained a high yield of large right-side-out membrane vesicles. The right-side-out vesicles catalyzed reversible light-induced proton efflux as did intact cells. Nucleotide transport activity was also catalyzed by these membrane vesicles. This activity was indirectly monitored by measurement of photophosphorylation or hydrolysis of externally added diphospho- and triphosphonucleosides. These enzymatic activities occur inside the cytoplasmic membrane of spheroplasts and membrane vesicles and therefore require the transport of the externally added reagents. The indirect measurements of transport were complemented by the demonstration of direct uptake of radiolabeled nucleotides into the membrane vesicles. These data support the suggestion that a nucleotide transporter located in the cytoplasmic membrane of R. capsulatus bacteria mediates these activities.  相似文献   

7.
Holt, Stanley C. (Dartmouth Medical School, Hanover, N.H.), S. F. Conti, and R. C. Fuller. Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum. J. Bacteriol. 91:349-355. 1966.-When the green bacterium Chloropseudomonas ethylicum was grown at various light intensities, the formation of the photosynthetic vesicles was found to be an inverse function of the light intensity at which the cells were grown. The specific chlorophyll content of isolated vesicles varied as the light intensity was changed over a wide range. Thus, the regulation of chlorophyll content in C. ethylicum in response to a change in light intensity is achieved both by a change in the number of vesicles that are formed and by a change in the specific chlorophyll content of these vesicles.  相似文献   

8.
Dunaliella tertiolecta Butcher was grown at two intensities (33, 150μEin · m?2· s?1) of blue light and white light at 0.25, 0.50 and 1.00 M NaCl. Growth rates were used as an indication of the relative osmoregulatory ability of cells in the various treatments. There was no significant effect on growth rate due to various NaCl molarities. No significant difference in growth rate was found between blue- and white-light cultures at the high intensity, the average growth constant being 2.07 divisions/day. However, at the low intensity illumination, blue light produced a significant increase in growth rate; 1.42 vs. 0.93 divisions/day for blue light and white light grown cells respectively. The average glycerol content of exponentially dividing cells grown at 0.25, 0.50 and 1.00 M NaCl was 0.12, 0.41 and 1.12 mg/108 cells, respectively, as measured by gas chromatography. The intracellular glycerol content was significantly reduced by blue light at both light intensities and at each NaCl molarity. However, high light intensity reduced cellular glycerol content more than the reduction effected by blue light. Glycerol accumulated in the medium throughout culture growth. Intracellular glycerol content also increased with cellular aging reaching 2.72 mg/108 cells in stationary phase, low intensity 1.00 M NaCl cultures. A negative correlation between glycerol content and growth rate was found. Total inhibition of glycerol production could not be obtained by treatment with blue light. However, this negative correlation possibly indicates that D. tertiolecta expends energy producing an excess amount of glycerol over that required for osmoregulation, leading to a reduction in the growth rate for the organism.  相似文献   

9.
Cells of Rhodopseudomonas capsulata, strain 37b4, leu-, precultivated anaerobically under low light intensity, were exposed to high light intensity (2000 W.m-2). The cells grew with a mass doubling time of 3 h. The synthesis of bacteriochlorophyll (BChl) began after two doublings of cell mass. Reaction center and light-harvesting BChl I (B-875) were the main constituents of the photosynthetic apparatus incorporated into the membrane. The size of the photosynthetic unit (total BChl/reaction center) decreased and light-harvesting BChl I became the dominating BChl species. Concomitant with the appearance of the different spectral forms of BChl the respective proteins were incorporated into the membrane, i.e. the three reaction center polypeptides, the polypeptide associated with light-harvesting BChl I, the two polypeptides associated with BChl II. A polypeptide of an apparent molecular weight of 45 000 was also incorporated. A lowering of the light intensity to 7 W.m-2 resulted in a lag phase of growth for 6 h. Afterwards, the time for doubling of cell mass was 11 h. The concentration of all three BChl complexes (reaction center, light-harvesting BChl I and II complexes)/cell and per membrane protein increased immediately. Also the size of the photosynthetic unit and the amount of intracytoplasmic membranes/cell increased. The activities of photophosphorylation, succinate dehydrogenase, NADH dehydrogenase and NADH oxidation (respiratory chain)/membrane protein are higher in membrane preparations isolated from cells grown at high light intensities than in such preparations from cells grown at low light intensities.  相似文献   

10.
Cells of Rhodomicrobium vannielii were grown in a controlled environment at several different light intensities. Differential rates of bacteriochlorophyll (BChl) synthesis and specific BChl contents were inversely related to the light intensity. On the other hand, the specific rate of growth-before reaching a maximal value-was directly related to the intensity of the light. Thin sections of cells grown at moderately low light showed the typical peripherally located, symmetrically distributed lamellate system, whereas an asymmetrical distribution of a less extensive lamellate system occurred in cells grown at high light intensities. It is proposed that a limited number of individual units of the lamellate system are originally derived from inward folds of the cytoplasmic membrane, and that subsequent lamellae arise by proliferation, including possible forking and definite folding back, of the few original lamellar membranes.  相似文献   

11.
Arne Schumacher  Gerhart Drews 《BBA》1979,547(3):417-428
Cells of Rhodopseudomonas capsulata, strain 37b4, leu?, precultivated anaerobically under low light intensity, were exposed to high light intensity (2000 W · m?2). The cells grew with a mass doubling time of 3 h. The synthesis of bacteriochlorophyll (BChl) began after two doublings of cell mass. Reaction center and light-harvesting BChl I (B-875) were the main constituents of the photosynthetic apparatus incorporated into the membrane. The size of the photosynthetic unit (total BChl/reaction center) decreased and light-harvesting BChl I became the dominating BChl species. Concomitant with the appearance of the different spectral forms of BChl the respective proteins were incorporated into the membrane, i.e. the three reaction center polypeptides, the polypeptide associated with light-harvesting BChl I, the two polypeptides associated with BChl II. A polypeptide of an apparent molecular weight of 45 000 was also incorporated. A lowering of the light intensity to 7 W · m?2 resulted in a lag phase of growth for 6 h. Afterwards, the time for doubling of cell mass was 11 h. The concentration of all three BChl complexes (reaction center, light-harvesting BChl I and II complexes)/cell and per membrane protein increased immediately. Also the size of the photosynthetic unit and the amount of intracytoplasmic membranes/cell increased.The activities of photophosphorylation, succinate dehydrogenase, NADH dehydrogenase and NADH oxidation (respiratory chain)/membrane protein are higher in membrane preparations isolated from cells grown at high light intensities than in such preparations from cells grown at low light intensities.  相似文献   

12.
13.
Rhodopseudomonas capsulata was grown either phototropically in the light or chemotrophically in the dark at oxygen tensions of 5 mm and 3 mm Hg in ammonium-limited continuous culture. During growth limitation bacteriochlorophyll content of cells and membranes varied dependent on growth rate drastically in chemotrophic cultures. Concomittantly, the ratio of membrane protein to total protein varied in the range of 30-41%. This dependence of membrane differentiation on growth rate was less evident in phototrophically grown cells. The incorporation of the bulk of bacteriochlorophyll was shown to be quantitatively correlated to the incorporation of 1-3 low molecular weight proteins with molecular weights in the range of 14 to less than 10 k daltons. Supported by similar findings of other authors it is proposed, that these proteins are to be attributed to the species of antenna bacteriochlorophyll and represent components of the photosynthetic apparatus. With decreasing growth rates the size of the photosynthetic unit with respect to the population of bacteriochlorophyll- and protein molecules was reduced subsequent to a reduction in the rate of incorporation of antenna-bacteriochlorophyll and the low molecular weight proteins, the reaction-center bacteriochlorophyll content of the membranes remaining constant. A parallel decrease in potential phosphorylating capacity was observed. It is concluded, that under these conditions, primary photochemical reactions in the reaction center were not the rate-limiting step in photophosphorylation. The interaction of growth limitation by an anabolic precursor (NH+4) and control of membrane differentiation by light intensity or oxygen tension is discussed.  相似文献   

14.
Zusammenfassung Der Zusammenhang zwischen der Ausbildung des intracytoplasmatischen Membransystems und dem Gehalt der Zellen an Fettsäuren und Lipid-Phosphor wird an Rhodospirillum rubrum untersucht. Trotz Steigerung des Membrangehaltes nach der Überführung aerober thylakoidfreier Dunkelzellen in anaerobe Lichtbedingungen bleibt der Gehalt an Fettsäuren und Lipid-Phosphor pro Gesamtzellprotein unverändert. Das gleiche Resultat ergibt sich, wenn eine Steigerung des Thylakoidgehaltes im System anaerob Normallicht (4000 Lux) anaerob Schwachlicht (400 Lux) hervorgerufen wird. Dieses Resultat eines konstanten Fettsäurespiegels wird nicht durch eine Änderung des Bezugsystems Protein erzielt. Der Quotient Proteingehalt pro Volumen dichtgepackter Bakterien bleibt während der Membransynthese konstant. Aus Licht- und Dunkelzellen werden eine Rohmembranund eine Rohzellwandfraktion angereichert. Die Wandfraktion aus aeroben Dunkelzellen enthält einen höheren Anteil der Gesamtfettsäuren der Zelle als die Wandfraktion aus anaeroben Lichtzellen. (2-14C)-Acetat wird von wachsenden Zellen unter Normallichtbedingungen (4000 Lux) in hoher Rate eingebaut. Nach der Umschaltung auf Schwachlicht (400 Lux) wird diese Aufnahme zugleich mit dem Wachstum gestoppt. Werden aerobe Dunkelzellen in semiaerobe Lichtbedingungen über-führt, wird der Gehalt an Fettsäuren und Lipid-Phosphor um 70% erhöht. Die Ergebnisse werden im Rahmen der Hypothese diskutiert, daß ein großer Teil der Zellfettsäuren in der Wand lokalisiert ist und daß dieser Anteil koordiniert mit dem Membrangehalt verändert werden kann.
Contents of fatty acids in light cultures of Rhodospirillun rubrum during the synthesis of thylakoids
Summary The correlation between the formation of the intracytoplasmic membrane system and the content of fatty acids and lipid phosphorus in cells of Rhodospirillum rubrum is investigated. After induction of thylakoid synthesis by transferring aerobic dark grown cells into anaerobic light conditions, the content of fatty acids and lipid phosphorus per protein of the cells remains unchanged. The same result is found if the increase of thylakoid content is induced by lowering the light intensity from moderate (4000 lux) to low (400 lux) light intensity under anaerobic conditions. The constant level of lipids during the morphogenesis of thylakoids is not conditioned by a change of the protein content of the cells. The ratio protein to volume unit of wet packed bacteria is not changed during the synthesis of thylakoids. Crude cell wall and membrane fractions are isolated from light and dark grown cells. The wall fraction from dark aerobic grown cells contains more fatty acids than that of anaerobic light grown cells. Label from (2-14C)-acetate is rapidly incorporated by growing cells cultivated under moderate light intensity. After transfer to low light conditions acetate incorporation and growth stop immediately. If aerobic dark grown cells are transferred to semiaerobic light conditions the content of fatty acids and lipid phosphorus in the cells is increased by 70%. The results are discussed from the view that a great part of the fatty acids of the cells is localized in the cell wall and that this amount can be altered in coordination with the membrane content of the cells.
  相似文献   

15.
The cellular content of phospholipid transfer activity in Rhodopseudomonas sphaeroides was examined as a function of both oxygen partial pressure and light intensity used for growth. Cells grown under high light conditions (100 W/m2) had over two times the cellular level of phospholipid transfer activity when compared with cells grown under other conditions. Although cells grown under low light conditions (3 W/m2) had the lowest amount of total phospholipid transfer activity, they had the highest level (49%) of membrane-associated transfer activity. The soluble phospholipid transfer activity was further localized into periplasmic and cytoplasmic fractions. The distribution of phospholipid transfer activity in cells grown under medium light intensity (10 W/m2) was calculated as 15.1% membrane-associated, 32.4% in the periplasm, and 52.5% in the cytoplasm. The phospholipid transfer activities in the periplasmic and cytoplasmic fractions had distinctly different properties with respect to their molecular weights (56,000 versus 27,000) and specificities of transfer (phosphatidylethanolamine greater than phosphatidylglycerol versus phosphatidylglycerol greater than phosphatidylethanolamine).  相似文献   

16.
The morphology (mainly prosthecae length), ultrastructure, and antenna pigment composition of the green sulfur bacterium Prosthecochloris aestuarii changed when grown under different light intensities. At light intensities of 0.5 and 5 micromol quanta m(-2) s(-1), the cells had a star-like morphology. Prosthecae, the characteristic appendages of the genus Prosthecochloris, were 232 nm and 194 nm long, respectively. In contrast, when grown at 100 micromol quanta m(-2) s(-1), these appendages were shorter (98 nm) and the cells appeared more rod-shaped. Transmission electron microscopy revealed a significant decrease in the cell perimeter to area ratio and in the number of chlorosomes per linear microm of membrane as light intensity increased. In addition to these morphological and ultrastructural responses, Prosthecochloris aestuarii exhibited changes in its pigment composition as a function of light regime. Lower specific pigment content and synthesis rates were found in cultures grown at light intensities above 5 micromol quanta m(-2) s(-1). A blue shift in the bacteriochlorophyll (BChl) c Q(y) absorption maximum of up to 17.5 nm was observed under saturating light conditions (100 micromol quanta m(-2) s(-1)). This displacement was accompanied by changes in the composition of BChl c homologs and by a very low carotenoid content. The morphological, ultrastructural and functional changes exhibited by Prosthecochloris aestuarii revealed the strong light-response capacity of this bacterium to both high and low photon-flux densities.  相似文献   

17.
Anacystis nidulans was grown at two different levels of white light, 7 and50 W.m?2. The cells were disrupted through French press treatment, and phycocyanin-free photosynthetic lamellae were obtained from the homogenate by fractionated centrifugation. Comparative absorption studies of the lamellae revealed that high intensity gave an increased carotenoid content relative to chlorophyll a. The spectral characteristics of the cell-free supernatants were also analysed. The high light intensity gave increased contents of both pteridines (410 nm) and allophycocyanin (655 nm) compared with the contents in algae grown at the low light level.  相似文献   

18.
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.

Lipid metabolism is fine-tuned to cellular metabolic demands during thylakoid membrane remodeling in response to long-term changes in light intensity.  相似文献   

19.
Comparison of Chloroflexus aurantiacus J-10-fl cells by freeze-fracture electron microscopy showed that cell shape and dimensions did not depend on oxygen tension or light intensity during growth. The major morphological difference between cells cultured anaerobically in the light and aerobically in the dark was the absence of chlorosomes in aerobically grown cells. C. aurantiacus cells cultured aerobically in the dark began bacteriochlorophyll synthesis immediately when shifted to either phototrophic or semiaerobic conditions. Cells adapting to phototrophic conditions grew to the same density and synthesized as much bacteriochlorophyll as nonadapting phototrophic cultures grown at the same light intensity. Cells adapting to reduced oxygen tension (semiaerobic conditions) in the dark entered an 8- to 12-h growth lag during which the bacteriochlorophyll content increased significantly. Despite variations in the initial bacteriochlorophyll content and in the length of the growth lag, the amounts of bacteriochlorophyll a and c were constant at the end of the semiaerobic growth lag. At later times during adaptation to semiaerobic conditions, after growth resumed, variations in the ratio of bacteriochlorophyll c/bacteriochlorophyll a were observed and suggested independent regulation of the two bacteriochlorophylls.  相似文献   

20.
Growth rate, sugar transport, and amino acid transport of yeast cells grown at 12 degrees C were inhibited by cool-white fluorescent light. At light intensities below 1,250 lx, growth and membrane transport were only slightly inhibited. Above 1,250 lx, there was increasing inhibition of both processes. Transport of histidine was completely inhibited after 3 to 5 days in cultures grown at 12 degrees C under 3,500-lx illumination. Cells grown at 20 degrees C were not inhibited by light intensities that caused complete loss of viability and membrane transport activity in cells grown at 12 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号