首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corticotropin-releasing hormone (CRH) is a brain neuropeptide which coordinates the endocrine, autonomic and behavioral responses to stress. We review the abnormal response to exogenous CRH in various psychiatric syndromes, including major depression and anorexia nervosa. We also contrast pituitary responses to CRH in patients with depression versus Cushing's disease. We hypothesize that CRH may play a role in the pathogenesis of various psychiatric syndromes which are characterized during their course by the symptom of depression.  相似文献   

2.
Mouse models of altered CRH-binding protein expression   总被引:1,自引:0,他引:1  
CRH is the key physiological mediator of the endocrine, autonomic, and behavioral responses to stress. The recent characterization of urocortin, a new mammalian CRH-like ligand, adds to the complexity of the CRH system. Both CRH and urocortin mediate their endocrine and/or synaptic effects via two classes of CRH receptors. Similarly, both CRH and urocortin bind to the CRH-binding protein (CRH-BP). This secreted binding protein is smaller than the CRH receptors, but binds CRH and urocortin with an affinity equal to or greater than that of the receptors, and blocks CRH-mediated ACTH release in vitro. Several regions of CRH-BP expression colocalize with sites of CRH synthesis or release, suggesting that this binding protein may have a profound impact on the biological activity of CRH (or urocortin). While in vitro and in vivo studies have characterized the biochemical properties and regulation of the CRH-BP, animal models of altered CRH-BP expression can provide additional information on the in vivo role of this important modulatory protein. This review focuses on three mouse models of CRH-BP overexpression or deficiency. These animal models show numerous physiological changes in the HPA axis and in energy balance, with additional alterations in anxiogenic behavior. These changes are consistent with the hypothesis that CRH-BP plays an important in vivo modulatory role by regulating levels of "free" CRH and other CRH-like peptides in the pituitary and central nervous system.  相似文献   

3.
Corticotropin-releasing hormone (CRH) plays a central role in the adaptation of the body to stress. CRH integrates the endocrine, autonomic and behavioural responses to stress acting as a secretagogue within the line of the hypothalamic pituitary adrenocortical (HPA) system and as a neurotransmitter modulating synaptic transmission in the central nervous system. Accumulating evidence suggests that the neuroendocrine and behavioural symptoms observed in patients suffering from major depression are at least in part linked to a hyperactivity of the CRH system. Genetic modifications of the CRH system by conventional and conditional gene targeting strategies in the mouse allowed us to study the endogenous mechanisms underlying HPA system regulation and CRH-related neuronal circuitries involved in pathways mediating anxiety and stress-related behaviour.  相似文献   

4.
5.
Corticoliberin (corticotrophin-releasing hormone, CRH) regulated of endocrine, autonomic and immune response to stress and is a mediator of anxiety in behavioral response. We studied the effect of corticoliberin on neuronal activity after microstimulation of olfactory cortex slices. Wistar rats strain were selected in T-maze labyrinth according to active and passive strategy of the adaptive behavior. The rats were exposed to water-immersions stress and after 10 days from their brain the olfactory cortex slices were prepared. The evoked focal potential were registered after perfusion with 0.1 mcM of CRH. It was revealed that in 60% of the slices of the active rats CRH induced the small decrease of excitatory amplitude but the increase amplitude inhibitory postsynaptic potential. In 40%, CRH induced the depression of synaptic transmission. Addition of CRH in incubation medium of the passive rat slices related, blockade the synaptic transmission.  相似文献   

6.
A review of the generation and characterization of corticotropin-releasing hormone (CRH)-deficient mice is presented. The studies summarized demonstrate the central role of CRH in the pituitary-adrenal axis response to stress, circadian stimulation, and glucocorticoid withdrawal. Additionally, pro-inflammatory actions of CRH at sites of local inflammation are given further support. In contrast, behavioral effects during stress that had been ascribed to CRH action are not altered in CRH-deficient mice. The normal behavioral response to stress in CRH-deficient mice strongly suggests the importance of other, possibly as yet undiscovered, CRH-like molecules.  相似文献   

7.
Corticotropin-releasing hormone (CRH) has multiple roles in coordinating the behavioral and endocrine responses to a host of environmental challenges, including social stressors. In the present study we evaluated the role of CRH in mediating responses to a moderate social stressor in Wied's black tufted-eared marmosets (Callithrix kuhlii). Male and female marmosets (n=14) were administered antalarmin (a selective CRH-1 receptor antagonist; 50 microg/kg, p.o.) or vehicle in a blind, counterbalanced, crossover design. One hr after treatment, marmosets were separated from long-term pairmates and then housed alone in a novel enclosure for 7 hr. Behavior was recorded during separation and upon reunion with the partner, and urine samples for cortisol assay collected before, during, and after the intervention. Separation from partners elevated urinary cortisol concentrations over baseline for both conditions, but antalarmin treatment reduced the magnitude of the elevation. Antalarmin also lowered rates of behavioral patterns associated with arousal (alarm and "e-e" vocalizations, object manipulate/chew), but had no effect on contact calls, locomotory activity or alertness. Although most patterns of social behavior upon reunion with the partner were not affected by antalarmin, antalarmin-treated marmosets displayed more sexual behavior (mounts and copulations) upon reunion. These data indicate that antagonism of the CRH-1 receptor acts to reduce the magnitude of both endocrine and behavioral responses to a moderate social stressor without causing any overall reduction in alertness or general activity. This supports the hypothesis that CRH, acting through its type 1 receptor, is involved in coordinating the responses to anxiety-producing events. These results further suggest that the marmoset is a useful model for exploration of the role of CRH in mediating the behavioral and neuroendocrine responses to psychosocial stressors, particularly in the context of heterosexual social relationships.  相似文献   

8.
Cocaine produces characteristic behavioral and autonomic responses due to its unique pharmacological properties. Many of the autonomic responses resemble those to acute behavioral stress. Both cocaine and behavioral stress have been shown to evoke an increase in sympathetic nerve activity that is primarily responsible for the peripheral cardiovascular responses. We noted varying hemodynamic and sympathetic response patterns to cocaine administration and to acute behavioral stress in rats that correlate with the predisposition to develop both a sustained increase in arterial pressure and cardiomyopathies. Several lines of evidence suggest that the autonomic response patterns are dependent on the actions of central peptides including angiotensin II (Ang II) and corticotropin-releasing hormone (CRH). This is based on observations demonstrating that intracerebroventricular (icv) administration of receptor antagonists for Ang II or CRH attenuated the decrease in cardiac output (CO) and increase in vascular resistance noted in some animals after cocaine administration or startle. In contrast, icv Ang II enhances the cardiodepression associated with cocaine administration or startle. Based on this and other evidence, we propose that the autonomic response patterns to startle and to cocaine are closely related and dependent on central Ang II and CRH. Furthermore, we suggest that these central peptides may be responsible for varying predisposition to cardiovascular disease.  相似文献   

9.
The role of CRH in behavioral responses to stress   总被引:7,自引:0,他引:7  
Smagin GN  Heinrichs SC  Dunn AJ 《Peptides》2001,22(5):713-724
Corticotropin-releasing hormone (CRH) and urocortin in the central nervous system affect behavior and can enhance behavioral responses to stressors. The action of CRH-related peptides is mediated through multiple receptors that differ markedly in their pharmacological profiles and anatomical distribution. Comparative pharmacology of CRH receptor agonists suggests that CRH, urocortin, sauvagine and urotensin consistently mimic, and CRH receptor antagonists consistently lessen, functional consequences of stressor exposure. Recently, important advances have been made in understanding the CRH system and its role in behavioral responses to stress by the development of specific CRH receptor antagonists, application of antisense oligonucleotides and development of transgenic mice lacking peptides and functional receptors. This review summarizes recent findings with respect to components of the CRH system and their role in stress-induced behavioral responses.  相似文献   

10.
Hsu SY  Hsueh AJ 《Nature medicine》2001,7(5):605-611
Adaptive stress responses mediated by the endocrine, autonomic, cardiovascular and immune systems are essential for the survival of the individual. Initial stress-induced responses provide a vital short-term metabolic lift, but prolonged or inappropriate exposure to stress can compromise homeostasis thereby leading to disease. This 'fight-or-flight' response is characterized by the activation of the corticotropin-releasing hormone (CRH)-adrenocorticotropin-glucocorticoid axis, mediated by the type 1 CRH receptor. In contrast, the type 2 CRH receptor mediates the stress-coping responses during the recovery phase of stress. We identified human stresscopin (SCP) and stresscopin-related peptide (SRP) as specific ligands for the type 2 CRH receptor. The genes encoding these peptides were expressed in diverse peripheral tissues as well as in the central nervous system. Treatment with SCP or SRP suppressed food intake, delayed gastric emptying and decreased heat-induced edema. Thus SCP and SRP might represent endogenous ligands for maintaining homeostasis after stress, and could allow the design of drugs to ameliorate stress-related diseases.  相似文献   

11.
A role for neuromedin U in stress response.   总被引:10,自引:0,他引:10  
Neuromedin U (NMU) is a hypothalamic peptide that has been recently found to reduce food intake, but few is known about its other functions in the central nervous system. We here studied behavioral activities induced by an intracerebroventricular (ICV) administration of NMU in rats and mice. NMU increased gross locomotor activity, face washing behavior, and grooming. NMU-induced stress response was significantly abolished by pretreatment with an antagonist of corticotropin-releasing hormone (CRH), alpha-helical CRH (9-41) (alpha-hCRH), or anti-CRH IgG. NMU did not induce locomotor activity in CRH knockout mice. NMU that interacts anatomically and/or functionally with the CRH system is a novel physiological regulator of stress response.  相似文献   

12.
The hypothalamic-pituitary-adrenal (HPA) axis is the major stress response system. Several components of the HPA axis, such as corticotropin-releasing hormone (CRH) and POMC peptides and their receptors are also present in the skin. In earlier studies, we showed that CRH inhibits cellular proliferation of immortalized human keratinocytes. We now examine further the functional activity of the HPA axis in the skin, by characterizing the actions of CRH on normal foreskin keratinocytes. The CRH receptor was detected as CRH-R1 antigen at 47 kDa in the cultured keratinocytes by Western blotting, and immunohistochemistry demonstrated its presence in the epidermal and follicular keratinocytes. CRH is also biologically active in cultured keratinocytes, where it inhibits proliferation and enhances the interferon-gamma-stimulated expression of the hCAM and ICAM-1 adhesion molecules and of the HLA-DR antigen. These effects were concentration-dependent, with maximal activity at CRH 10(-7) M. Thus, in the keratinocyte, the most important cellular component of the epidermis, CRH appears to induce a shift in energy metabolism away from proliferation activity, and toward the enhancement of immunoactivity. Therefore, similar to its central actions, cutaneous CRH may also he involved in the stress response, but at a highly localized level.  相似文献   

13.
The wide distribution of corticotrophin-releasing hormone (CRH) receptors in brain and periphery appear to be important in integrating the responses of the brain, endocrine and immune systems to physiological, psychological and immunological stimuli. The type 1 receptors are highly expressed throughout the cerebral cortex, a region involved in cognitive function and modulation of stress responses, where they are coupled to the adenylyl cyclase system. Using techniques that analyse receptor-mediated guanine-nucleotide binding protein (G-proteins) activation, we recently demonstrated that expressed type 1alpha CRH receptors are capable of activating multiple G-proteins, which suggests that CRH can regulate multiple signalling pathways. In an effort to characterize the intracellular signals generated by CRH in the rat cerebral cortex we sought to identify G-proteins activated by CRH in a physiological membrane environment. Rat cerebral cortical membrane suspensions were analysed for the ability of CRH to stimulate incorporation of [alpha-32P]-GTP-gamma-azidoanilide to various G-protein alpha-chains. Our results show that CRH receptors are coupled to and activate at least five different G-proteins (Gs, Gi, Gq/11, Go and Gz) with subsequent stimulation of at least two intracellular signalling cascades. In addition, the photoaffinity experiments indicated that the CRH receptors preferentially activate the 45 kDa form of the Gs alpha-protein. This data may help elucidate the intracellular signalling pathways mediating the multiple actions of CRH especially under different physiological conditions.  相似文献   

14.
Corticotropin releasing hormone (CRH) is a 41-residue hypothalamic neuropeptide that has been shown to have potent behavioral effects in animals and has been implicated in clinical disorders in man. This review focuses on those aspects of the behavioral effects of CRH related to food-associated behaviors. The effects of CRH on food intake are compared with its effects on performances maintained by food presentation, and contrasted with the effects of CRH on performances maintained by other events. The effects of CRH antagonists and drugs that interact with the behavioral effects of CRH are also reviewed, particularly with respect to their direct effects on food intake. Lastly, data assessing the effects of CRH administration on central neurotransmitter levels are presented and compared with levels seen in clinical populations. The effect of CRH on food intake seen in animals is consistent with a putative role for CRH in clinical syndromes where appetite suppression is apparent. Since some of the effects of CRH on food intake are subject to pharmacological intervention, strategies directed at peptidergic mechanisms of psychiatric disorders should be explored.  相似文献   

15.
16.
Intracerebroventricularly (icv) administered corticotropin-releasing hormone (CRH) produces a dose-dependent increase in heart rate in association with behavioral activation. The present study was designed to investigate whether these CRH-induced responses are dependent on adrenal function. The effects of adrenalectomy (ADX) and subsequent corticosterone replacement were studied. Administration icv of 300 ng of CRH failed to produce behavioral activation and tachycardia in ADX rats. Corticosterone replacement restored the CRH-induced behavioral response to preoperative levels, whereas the CRH-induced tachycardia was partially restored. This latter result may be related to the fact that the baseline heart rate of ADX animals appeared to be significantly higher than that of corticosterone-treated ADX animals. It is concluded that circulating adrenal corticosterone in ADX rats is involved in the expression of the behavioral and cardiac effect of central CRH.  相似文献   

17.
The corticotropin-releasing hormone (CRH) family of neuropeptides includes CRH (a 41-amino acid hypothalamic peptide) and urocortin. Corticotropin-releasing factor (CRF), a peptide first isolated from mammalian, plays an important role in the regulation of the pituitary-adrenal axis, and in endocrine, autonomic, immune and behavioral responses to stress. In this study, we cloned rat urocortin II (UCN II) cDNA from rat mid-brain by RT-PCR. The rat UCN II clone contained an open reading frame (ORF) 109 amino acids which shared 90% and 63% homology with mouse and human homologues, respectively. The expression of UCN II mRNA is mainly distributed in bone marrow, ovary, uterus, hypophysis, adrenal gland, and skin. In this study, rat recombinant UCN was expressed in E. coli and purified in active form. Furthermore, purified recombinant UCN II protein specifically binds to CRF receptor 2 in rat ROS 17 / 2.8 and GH3 cells by flow-cytometry analysis. UCN II cDNA clone obtained in this study will be useful for further investigation on behavioral responses to stress in rats.  相似文献   

18.
19.
Intrastriatal corticotrophin-releasing hormone (CRH) was shown to induce a decrease in the plasma tectosterone concentration. Besides, the 6-OHDA pre-treatment completely prevented the suppression of plasma testosterone in response to intrastriatal CRH administration. The findings suggest that the striatum is involved in the extrahypothalamic regulation of the gonadal endocrine function.  相似文献   

20.
Neostriatum and its dopaminergic mechanisms were shown to be involved in mediation of some adaptive effects of the CRH (corticotropin-releasing hormone), both behavioural and endocrine. The data obtained suggest that neostriatum contributes to a coping response by selecting an appropriate behavioural strategy in stressful situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号