共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the planar lipid bilayer technique, it is shown that a yeast elicitor as well as several cellulolytic enzymes used in protoplasting plant cells contain components which strongly interact with the bilayers. This results in the appearance of transmembrane ion fluxes which may pass through membrane defect structures and even large conductance pores with unitary conductances above 400 pS. Since membrane depolarization is an immediate response in the process of defense elicitation in plant cells, elicitors may act directly with the lipid phase of cell membranes, causing depolarizations and thus initiating the process of elicitation. When using enzymatically prepared protoplasts in electrophysiological work, contributions to electrical activity by membrane active constituents originating from the enzymes used must be expected. 相似文献
2.
In this paper a dispersal-attack theory for bark beetle attacking trees is developed from a set of simple assumptions, and the resulting theoretical model is fit to data from four epidemic studies. Implications of the theory are discussed in relation to the dynamics of lodgepole pine-mountain pine beetle interactions. 相似文献
3.
Secondary xylem (wood) formation in gymnosperms requires that the tracheid protoplasts first build an elaborate secondary cell wall from an array of polysaccharides and then reinforce it with lignin, an amorphous, three-dimensional product of the random radical coupling of monolignols. The objective of this study was to track the spatial distribution of monolignols during development as they move from symplasm to apoplasm. This was done by feeding [(3)H]phenylalanine ([(3)H]Phe) to dissected cambium/developing wood from lodgepole pine (Pinus contorta var latifolia) seedlings, allowing uptake and metabolism, then rapidly freezing the cells and performing autoradiography to detect the locations of the monolignols responsible for lignification. Parallel experiments showed that radioactivity was incorporated into polymeric lignin and a methanol-soluble pool that was characterized by high-performance liquid chromatography. [(3)H]Phe was incorporated into expected lignin precursors, such as coniferyl alcohol and p-coumaryl alcohol, as well as pinoresinol. Coniferin, the glucoside of coniferyl alcohol, was detected by high-performance liquid chromatography but was not radioactively labeled. With light microscopy, radiolabeled phenylpropanoids were detected in the rays as well as the tracheids, with the two cell types showing differential sensitivity to inhibitors of protein translation and phenylpropanoid metabolism. Secondary cell walls of developing tracheids were heavily labeled when incubated with [(3)H]Phe. Inside the cell, cytoplasm was most strongly labeled followed by Golgi and low-vacuole label. Inhibitor studies suggest that the Golgi signal could be attributed to protein, rather than phenylpropanoid, origins. These data, produced with the best microscopy tools that are available today, support a model in which unknown membrane transporters, rather than Golgi vesicles, export monolignols. 相似文献
4.
Variations on the norm of reaction among ten natural lodgepole pine populations sampled from three lodgepole pine subspecies
( Pinus contorta ssp. contorta, ssp. latifolia and ssp. murrayana) were studied by using 20 year heights measured in 57 provenance test sites across interior British Columbia (B.C.). There
were significant population by site interactions. Concurrent joint regression and the AMMI model were used to dissect these
population by environmental interactions. Joint regression analysis indicated that three populations (from the northwest)
had a negative linear regression coefficient with environmental deviation, three (from central and southeast sites) had a
positive regression coefficient and four (from the southwest) had a zero regression coefficient. The AMMI model revealed a
similar pattern of reaction norm among the ten populations. But the three significant IPCA axes, which captured twice as much
of the G × E sum of squares than joint regression, were more effective in separating the ten populations and associating their
performance with the climate of test sites and their origin. The variation patterns of reaction norm in lodgepole pine populations
demonstrated that adaptation of lodgepole pine natural populations to the various physical environments, at sub-species as
well as at population level, was due largely to a balance between selection for high growth potential in less severe environments
and selection for high cold hardiness in severe environments.
Received: 4 May 2000 / Accepted: 10 November 2000 相似文献
5.
Pine cones that remain closed and retain seeds until fire causes the cones to open (cone serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine, there is substantial geographical variation in serotiny across the Rocky Mountain region. This variation in serotiny has evolved as a result of geographically divergent selection, with consequences that extend to forest communities and ecosystems. An understanding of the genetic architecture of this trait is of interest owing to the wide-reaching ecological consequences of serotiny and also because of the repeated evolution of the trait across the genus. Here, we present and utilize an inexpensive and time-effective method for generating population genomic data. The method uses restriction enzymes and PCR amplification to generate a library of fragments that can be sequenced with a high level of multiplexing. We obtained data for more than 95,000 single nucleotide polymorphisms across 98 serotinous and nonserotinous lodgepole pines from three populations. We used a Bayesian generalized linear model (GLM) to test for an association between genotypic variation at these loci and serotiny. The probability of serotiny varied by genotype at 11 loci, and the association between genotype and serotiny at these loci was consistent in each of the three populations of pines. Genetic variation across these 11 loci explained 50% of the phenotypic variation in serotiny. Our results provide a first genome-wide association map of serotiny in pines and demonstrate an inexpensive and efficient method for generating population genomic data. 相似文献
6.
Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH 4), and nitrate (NO 3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish within the historic P. contorta range and dominant EMF assemblages may be conserved. 相似文献
7.
Understory plants are an important element of forests, having a considerable influence on ecosystem functioning and canopy-tree development following disturbance. Recent bark beetle outbreaks across western North American forests have caused extensive canopy mortality, creating new growing conditions that provide the opportunity for changes within the intact understory. Over a five-year period following peak mountain pine beetle (MPB) activity across lodgepole pine-dominated forests in Rocky Mountain National Park, Colorado, we measured the changes in plant diversity, cover, and dominance by lifeform and quantified tree regeneration rates. Average species richness and diversity increased, but overall plant cover did not change. Graminoids appeared to benefit the most, increasing in average cover, richness, and relative dominance. The rise in graminoid dominance was largely at the expense of shrubs, which showed little ability to benefit from overstory mortality within the first years following attack. Most plant responses were positively related to the total tree basal area lost since the peak of the outbreak, suggesting that increased resource availability following tree death may benefit understory plants. However, a negative relationship between several understory variables and tree sapling density provides evidence that understory plants compete with saplings for the newly available resources. Tree seedling density nearly doubled over the duration of the study, indicating a strong regeneration pulse. Among species, lodgepole pine displayed the greatest tree seedling establishment. This is one of the first studies to use repeated measurements to describe this often-overlooked component of forest change associated with MPB disturbance. 相似文献
8.
Storage and flux of nitrogen were studied in several contrasting lodgepole pine ( Pinus contorta spp. latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m –2), with aboveground detritus (37.5–48.8g · m –2) and living biomass (19.5–24.0 g · m –2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m –2 · yr –1), and biological fixation of atmospheric N (<0.03 g · m –2 · yr –1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herb Lupinus argenteus probably exceeded 0.1 g · m –2 · yr –1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m –2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m –2 · yr –1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L –1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH 4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m –2 · yr –1 with estimated root turnover of 0.37-gN · m –2 · yr –1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m –2 · yr –1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests. 相似文献
9.
Our understanding of plant defensive mechanisms against herbivore and pathogen attack has significantly increased over the past decade. The complex cascade of defensive events is initiated and controlled by a network of interacting plant hormones. Especially, the conjugate of jasmonate and isoleucine is a major regulator which controls gene expression and production of secondary metabolites after (a)biotic challenges. This review offers a survey of both natural and synthetic mimetics of the natural hormone which can be used for a selective manipulation and the study of the plant’s secondary metabolism. 相似文献
10.
Climate change leads to phenology shifts of many species. However, not all species shift in parallel, which can desynchronize interspecific interactions. Within trophic cascades, herbivores can be top–down controlled by predators or bottom–up controlled by host plant quality and host symbionts, such as plant-associated micro-organisms. Synchronization of trophic levels is required to prevent insect herbivore (pest) outbreaks. In a common garden experiment, we simulated an earlier arrival time (~2 weeks) of the aphid Rhopalosiphum padi on its host grass Lolium perenne by enhancing the aphid abundance during the colonization period. L. perenne was either uninfected or infected with the endophytic fungus Epichloë festucae var. lolii. The plant symbiotic fungus produces insect deterring alkaloids within the host grass. Throughout the season, we tested the effects of enhanced aphid abundance in spring on aphid predators (top–down) and grass–endophyte (bottom–up) responses. Higher aphid population sizes earlier in the season lead to overall higher aphid abundances, as predator occurrence was independent of aphid abundances on the pots. Nonetheless, after predator occurrence, aphids were controlled within 2 weeks on all pots. Possible bottom–up control of aphids by increased endophyte concentrations occurred time delayed after high herbivore abundances. Endophyte-derived alkaloid concentrations were not significantly affected by enhanced aphid abundance but increased throughout the season. We conclude that phenology shifts in an herbivorous species can desynchronize predator–prey and plant–microorganism interactions and might enhance the probability of pest outbreaks with climate change. 相似文献
11.
Across different host plant species, the effects of mycorrhizal colonization on host growth parameters can vary, but intraspecific variation in this relationship has rarely been measured. We tested the direction and consistency of the relationship between ectomycorrhizal colonization level and growth responses across seed families of Pinus contorta var. latifolia. Root tips of seedlings from eight full sib seed families varied in levels of ectomycorrhizal fungal colonization from 39% to 100%. We observed positive, negative, or neutral relationships between colonization level and shoot mass, depending on plant family. For the majority of seed families no relationship was observed between colonization level and root mass; however, two seed families showed negative relationships. Shoot height differed only by seed family. Results from our study indicate that the relationship between colonization level and host growth depends on host genotype. We suggest that models of plant intraspecific interactions should consider ectomycorrhizal associations when assessing phenotypic variability. 相似文献
12.
Because species affect ecosystem functioning, understanding migration processes is a key component of predicting future ecosystem responses to climate change. This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine ( Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate. 相似文献
13.
Summary Populations of the mountain pine beetle in lodgepole pine were measured using two sample sizes: a single gallery—this is the basic family unit constructed by the parent beetles; and a 6- by 6-inch square area—the bark was removed and the brood counted. Data from the 6- by 6-inch sample were recorded in three ways. Each measurement unit provided different biological information and required different statistical considerations. The single gallery sample provided the most representative data of the entire population, but required additional biological measurement of attack density. The 6- by 6-inch sample brood data taken on an attack density basis provided the most statistically reliable information and encompassed the pertinent biological information. Percent survival, as could be used in elementary life tables, was rather consistent in all measurement units, regardless of point in time of sampling. 相似文献
14.
Although growth response functions have previously been developed for lodgepole pine ( Pinus contorta Dougl. ex Loud.) populations in British Columbia, new analyses were conducted: (1) to demonstrate the merit of a new local climate model in genecological analysis; (2) to highlight new methods for deriving response functions; and (3) to evaluate the impacts of management options for existing geographically defined seed planning units (SPUs) for reforestation. Results of this study suggest that new methods for anchoring population response functions, and a multivariate approach for incorporating climate variables into a single model, considerably improve the reliability of these functions. These functions identified a small number of populations in central areas of the species distribution with greater growth potential over a wide range of mean annual temperature (MAT). Average productivity of lodgepole pine is predicted to increase (up to 7%) if moderate warming (~2°C MAT) occurs in the next few decades as predicted, although productivity would substantially decline in some SPUs in southern BC. Severe global warming (>3°C MAT) would result in either a drastic decline in productivity or local populations being extirpated in southern SPUs. New deployment strategies using the best seed sources for future reforestation may not only be able to mitigate the negative impact of global warming, but may even be able to increase productivity in some areas. 相似文献
17.
Laminarin, a linear beta-1,3 glucan (mean degree of polymerization of 33) was extracted and purified from the brown alga Laminaria digitata. Its elicitor activity on tobacco (Nicotiana tabacum) was compared to that of oligogalacturonides with a mean degree of polymerization of 10. The two oligosaccharides were perceived by suspension-cultured cells as distinct chemical stimuli but triggered a similar and broad spectrum of defense responses. A dose of 200 microg mL(-1) laminarin or oligogalacturonides induced within a few minutes a 1.9-pH-units alkalinization of the extracellular medium and a transient release of H(2)O(2). After a few hours, a strong stimulation of Phe ammonia-lyase, caffeic acid O-methyltransferase, and lipoxygenase activities occurred, as well as accumulation of salicylic acid. Neither of the two oligosaccharides induced tissue damage or cell death nor did they induce accumulation of the typical tobacco phytoalexin capsidiol, in contrast with the effects of the proteinaceous elicitor beta-megaspermin. Structure activity studies with laminarin, laminarin oligomers, high molecular weight beta-1, 3-1,6 glucans from fungal cell walls, and the beta-1,6-1,3 heptaglucan showed that the elicitor effects observed in tobacco with beta-glucans are specific to linear beta-1,3 linkages, with laminaripentaose being the smallest elicitor-active structure. In accordance with its strong stimulating effect on defense responses in tobacco cells, infiltration of 200 microg mL(-1) laminarin in tobacco leaves triggered accumulation within 48 h of the four families of antimicrobial pathogenesis-related proteins investigated. Challenge of the laminarin-infiltrated leaves 5 d after treatment with the soft rot pathogen Erwinia carotovora subsp. carotovora resulted in a strong reduction of the infection when compared with water-treated leaves. 相似文献
18.
Summary A laboratory experiment was done to see whether artificially induced waterlogging, or water shortage in lodgepole pine ( Pinus contorta) would affect the egg laying preference, larval survival and larval growth of Panolis flammea. Female moths showed no egg laying preference between unstressed and stressed plants. Larval survival was greater on unstressed (85%) than on stressed (32%) plants, and the weight of larvae reared on unstressed plants was significantly greater than those reared on stressed plants. These results imply that outbreaks of the pine beauty moth on trees growing in deep unflushed peat are not caused by a stress-induced improvement in the nutritional quality of the host-plant. 相似文献
19.
To estimate strength parameters of living lodgepole pine stems over a range of temperatures (-16 to +17°C), trees were winched near or past the point of breakage, during which the applied force and deflection of the stem were measured. Trees were 43 years old, 10 m tall, and since the experiments were conducted in the late winter and early spring, when the soil was frozen and the roots were held rigid, the resistance of the stem to deflection could be isolated from the resistances of the root and soil. Static flexure theory for cantilever beams was used to estimate stress, strain, Young's modulus ( E), and modulus of rupture (MOR) of the stem. Trees were stiffer and stronger in the winter when wood was frozen, with a nearly 50% increase in E and MOR compared with the spring, when wood was thawed. In winter stems failed on the tension side, while in spring stems buckled on the compression side. Compared with strength estimations reported in the literature from small samples of clear green wood at standard temperatures, modulus of elasticity (MOE) estimates of the whole stem were 35% lower in spring, and in winter MOR exceeded published values by 53%. This suggests that the sway behavior of trees is probably temperature dependent in northern forests and whole-tree strength characteristics should be considered in wind sway models used in these regions. 相似文献
|