首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The redox interconversion of Escherichia coli glutathione reductase has been studied both in situ, with permeabilized cells treated with different reductants, and in vivo, with intact cells incubated with compounds known to alter their intracellular redox state.The enzyme from toulene-permeabilized cells was inactivated in situ by NADPH, NADH, dithionite, dithiothreitol, or GSH. The enzyme remained, however, fully active upon incubation with the oxidized forms of such compounds. The inactivation was time-, temperature-, and concentration-dependent; a 50% inactivation was promoted by just 2 M NADPH, while 700 M NADH was required for a similar effect. The enzyme from permeabilized cells was completely protected against redox inactivation by GSSG, and to a lesser extent by dithiothreitol, GSH, and NAD(P)+. The inactive enzyme was efficiently reactivated in situ by physiological GSSG concentrations. A significant reactivation was promoted also by GSH, although at concentrations two orders of magnitude below its physiological concentrations. The glutathione reductase from intact E. coli cells was inactivated in vivo by incubation with DL-malate, DL-isocitrate, or higher L-lactate concentrations. The enzyme was protected against redox inactivation and fully reactivated by diamide in a concentration-dependent fashion. Diamide reactivation was not dependent on the synthesis of new protein, thus suggesting that the effect was really a true reactivation and not due to de novo synthesis of active enzyme. The glutathione reductase activity increased significantly after incubation of intact cells with tert-butyl or cumene hydroperoxides, suggesting that the enzyme was partially inactive within such cells. In conclusion, the above results show that both in situ and in vivo the glutathione reductase of Escherichia coli is subjected to a redox interconversion mechanism probably controlled by the intracellular NADPH and GSSG concentrations.  相似文献   

2.
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

3.
Cakmak  I.  Marschner  H. 《Plant and Soil》1993,155(1):127-130
The effect of varied zinc (Zn) supply on the activities of superoxide dismutase (SOD), ascorbate (AsA) peroxidase, glutathione (GSSG) reductase, catalase and guaiacol peroxidase was studied in leaves of bean (Phaseolus vulgaris) plants grown for 15 days in nutrient solution. Zinc deficiency severely decreased plant growth and the leaf concentrations of soluble protein and chlorophyll. Resupply of Zn to deficient plants for up to 72h restored protein concentrations more rapidly than chlorophyll and plant growth. With the exception of guaiacol peroxidase, the activities of all enzymes were significantly decreased by Zn deficiency, in particular GSSG reductase and SOD. Within 72h of resupplying Zn to deficient plants, the enzyme activities reached the level of the Zn sufficient plants. The results indicate severe impairment in the ability of Zn-deficient leaves to enzymically scavenge O2 - and H2O2. Consequences and reasons of this impairment are discussed in terms of photooxidation of chloroplast pigments and inhibition of the biosynthesis of the related scavenger enzyme proteins.  相似文献   

4.
Biochemical responses to cadmium (Cd2+) and copper (Cu2+) exposure were compared in two strains of the aquatic hyphomycete (AQH) Heliscus lugdunensis. One strain (H4-2-4) had been isolated from a heavy metal polluted site, the other (H8-2-1) from a moderately polluted habitat. Conidia of the two strains differed in shape and size. Intracellular accumulation of Cd2+ and Cu2+ was lower in H4-2-4 than in H8-2-1. Both␣strains synthesized significantly more glutathione (GSH), cysteine (Cys) and γ-glutamylcysteine (γ-EC) in the presence of 25 and 50 μM Cd2+, but quantities and rates of synthesis were different. In H4-2-4, exposure to 50 μM Cd2+ increased GSH levels to 262% of the control; in H8-2-1 it increased to 156%. Mycelia of the two strains were analysed for peroxidase, dehydroascorbate reductase, glutathione reductase and glucose-6-phosphate dehydrogenase. With Cd2+ exposure, peroxidase activity increased in both strains. Cu2+ stress increased dehydroascorbate reductase activity in H4-2-4 but not in H8-2-1. Dehydroascorbate reductase and glucose-6-phosphate dehydrogenase activities progressively declined in the presence of Cd2+, indicating a correlation with Cd2+ accumulation in both strains. Cd2+ and Cu2+ exposure decreased glutathione reductase activity.  相似文献   

5.
A comprehensive study was carried out to examine the interactions between the two major hydrophilic antioxidants l ‐ascorbate (vitamin C, l ‐AA), and glutathione (γ‐glutamyl cysteinylglycine, GSH), and other antioxidant pools in tissues of Malus, to identify factors affecting steady‐state cellular concentrations. We show that in Malus, each tissue type has a characteristic and different l ‐AA/GSH ratio and that in fruit, exocarp (epidermal) tissue acclimated to high light has higher l ‐AA levels but lower GSH levels than shaded (green) areas. Maturing seeds were characterized by the highest concentrations of GSH and a highly oxidized l ‐AA pool. It is demonstrated that fruit seeds are capable of l ‐AA biosynthesis, but that this occurs exclusively by means of the Smirnoff–Wheeler pathway. By contrast, foliar tissue was also able to synthesize l ‐AA using uronic acid substrates. Unlike the fruit of some other plant species however, the remaining fruit tissues are incapable of de novol ‐AA biosynthesis. The observed differences in the steady‐state concentrations of l ‐AA and GSH and the capacity to withstand stress in fruit, were also independent of the rates of uptake of photosynthate or of l ‐AA, but were correlated with the protective effect provided by phenolic compounds in these tissues. During development and maturation, l ‐AA and GSH levels in apple fruit declined steadily while foliar levels remained essentially constant throughout. However there was no apparent relationship between the free sugar contents of the fruit and antioxidant concentrations.  相似文献   

6.
The effects of in vivo exposure to a natural and synthetic estrogen upon three hepatic phase II enzyme pathways involved in cellular protection against reactive intermediates were investigated in the largemouth bass (Micropterus salmoides). The pathways analyzed included glutathione S-transferases (GST), glutathione (GSH) biosynthesis and NAD(P)H-dependent quinone reductase (QR). Following exposure to 17-beta estradiol (E2, a model natural estrogen; 2 mg/kg, i.p.) or 4-nonylphenol (NP, a model synthetic estrogen; 5 mg/kg and 50 mg/kg, i.p.), serum vitellogenin concentrations in male fish were markedly increased. Exposure to E2 did not affect steady-state GST-A mRNA expression, although GST catalytic activity toward 1-chloro 2,4-dinitrobenzene (CDNB) was elevated at 48 h post-injection. In addition, the rates of bass liver GST-4-hydroxy-2-nonenal (GST-4HNE) conjugation were elevated by E2 exposure at all timepoints. In contrast, exposure to NP decreased steady-state GST-A mRNA levels, but did not alter GST catalytic activities. Hepatic GSH levels were not significantly affected by exposure to either compound, although a trend towards increased GSH biosynthesis was observed with both compounds. Although bass liver quinone reductase catalyzed 2,6-dichloroindophenol (DCP) reduction, unlike in rodents, these catalytic activities were not inhibited by dicoumarol. Exposure to 5 mg/kg NP significantly increased hepatic QR activities. Collectively, our data suggest that exposure to E2 or NP alters the ability of largemouth bass to biotransform environmental chemicals through glutathione S-transferase and quinone reductase catalytic pathways.  相似文献   

7.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

8.
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidant/antioxidant imbalance. Glutathione is the most abundant cellular low‐molecular weight thiol and the glutathione redox cycle is the fundamental component of the cellular antioxidant defence system. Concentration of total glutathione and catalytic activities of glutathione peroxidase and glutathione reductase were determined in peripheral blood of patients (n = 109) and healthy subjects (n = 51). Concentration of total glutathione in patients was not changed in comparison to healthy controls. However, we found statistically significant difference between patients with moderate and severe disease stages. Glutathione reductase activity was increased, while glutathione proxidase activity was decreased in the patients with COPD, when compared to healthy controls. We found no significant difference in glutathione peroxidase and glutathione reductase activities between stages. Patients who smoked had lower concentration of total glutathione compared with former smokers and never‐smoking patients. Lung function parameters were inversely associated with glutathione level. Evidence is presented for differential modulation of glutathione peroxidase and glutathione reductase activities in peripheral blood of patients with stable COPD. We suppose that in addition to glutathione biosynthesis, glutathione reductase‐dependent regulation of the glutathione redox state is vital for protection against oxidative stress. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Ten strawberry genotypes, resistant and moderately resistant (Joliette, Seascape, Aromas, FIN005-55 and FIN005-50) and susceptible ones (FIN00132-8, FIN00134-11, FIN00132-14, FIN005-7 and Kent) were used to assess the role of the antioxidative defence system against Mycosphaerella fragariae infection. The pathogen-induced changes of hydrogen peroxide (H2O2) and antioxidant enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in the ascorbate–glutathione (ASC–GSH) cycle were examined in leaves of the selected genotypes. A significant different response was observed among the genotypes. A marked increase in H2O2 content, APX, MDHAR, DHAR and GR activities were observed in resistant and moderately resistant genotypes after inoculation by M. fragariae. In contrast, weak changes were observed in susceptible genotypes for the aforementioned enzymes and compounds. It seems that resistant genotypes capable of overproducing H2O2 have a higher capacity to scavenge and reduce the injury to strawberry leaves by regulating the ASC–GSH cycle. The results may be useful in future breeding programmes to select those individuals with high scavenging properties to breed new resistant lines.  相似文献   

10.
11.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

12.
Compared to non-embryogenic callus, proembryonic mass, globular, and heart-shaped embryos of Eleutherococcus senticosus had higher levels of endogenous reduced glutathione (GSH). GSH content declined during the course of the embryo development (torpedo and cotyledon). Similarly, glutathione reductase that is involved in the recycling of GSH providing a constant intracellular level of GSH was also higher in globular and heart-shaped embryos. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase activity over the same period. The endogenous levels of oxidized glutathione showed similar trend during development of the somatic embryos, whereas it declined in maturing somatic embryos. A pronounced increase in glutathione-S-transferase, glutathione peroxidase, catalase, and guaiacol peroxidase activity was observed during somatic embryo maturation. Ascorbate-glutathione cycle enzymes (ascorbate peroxidase; dehydroascorbate reductase and monodehydroascorbate reductase) activities also induced indicated that antioxidant enzymes played an important role during embryo development. These results suggested that the coordinated up-regulations of the antioxidant enzymes and glutathione redox system provide protection during somatic embryo development in E. senticosus. Antioxidant responses through alterations of the glutathione redox systems, have been described in the present studies have a significant role in somatic embryo development.  相似文献   

13.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

14.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

15.
In the long-term cultivated callus cultures ofMatricaria recutita L. the identical concentration changes in the biosynthesis of glutathione, glutamate, aspartate, total thiols and proteins were detected within the subculture. The level of oxidized glutathione during the growth of callus culture was low with the highest value 10.66 nmol g-1 on the 13th day of subculture. The ratio GSH/GSSG which significantly influences the redox processes in a cell, and the activity of glutathione reductase increased from the 8th day. Ascorbate formation was detected on the 17th day, although no relation between the ascorbate synthesis and the concentration of glutathione and glutathione reductase was found.  相似文献   

16.
Erythrocyte reduced glutathione (GSH) levels were investigated in Spanish Churra sheep. GSH deficiency appeared in a high frequency, a clear bimodal distribution being apparent. No significant concentrations of amino acids were detected in the samples and no significant differences were found in potassium concentrations between the low-GSH and the high-GSH type animals. Such results indicate that erythrocyte GSH deficiency in Churra sheep may be similar to the ‘Merino type’ GSH deficiency. Furthermore, limited inheritance data suggested that a second type of GSH deficiency might be present also in Churra sheep.  相似文献   

17.
Dehydroascorbate reductase was detected in the leaves of several plants and has been partially purified from spinach leaves. The enzyme has a MW of ca 25 000, a pH optimum of 7.5, a Km for glutathione (GSH) of 4.43 ± 0.4 mM and a Km for dehydroascorbate of 0.34 ± 0.05 mM. High concentrations of dehydroascorbate inhibit the enzyme. Cysteine cannot replace GSH as a donor. The purified dehydroascorbate reductase is extremely unstable and also inhibited by compounds which react with thiol groups. Dehydroascorbate does not protect the enzyme against such inhibition. GSH reduces dehydroascorbate non-enzymically at alkaline pH values.  相似文献   

18.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   

19.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

20.
The role of intracellular non-protein bound sulphydryl compounds (NPSH), and in particular that of glutathione (GSH), in the response of cells to ionizing radiation under different O2 concentrations has been assessed using cell strains deficient in glutathione synthetase and exhibiting different NPSH levels. The cell strains used originated from patients with 5-oxoprolinuria and from their relatives (heterozygotes and proficient homozygotes). No correlation has been found between NPSH and GSH concentrations and radiosensitivity under oxic, aerobic and hypoxic conditions. However, a highly significant correlation has been observed between radiosensitivity under hypoxic conditions (and therefore the oxygen enhancement ratio) and the glutathione synthetase activity, suggesting that synthesis of GSH is required after irradiation. In order to explain our results we postulated, beside radical processes, the existence of a GSH-dependent enzymatic repair mechanism for N2 type damage. Hypoxic radio-sensitivity measured with survival curves would result from the interaction of both competition and biochemical repair processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号