首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties.  相似文献   

2.
Aniline-based aromatic amine carcinogens are poorly detected in short-term mutagenicity assays such as the Salmonella reverse mutation (Ames) assay. More information on the mechanism of toxicity of such Salmonella-negative carcinogens is needed. Aniline and o-toluidine are negative in the Ames assay, but induce deletions (DEL) due to intrachromosomal recombination in Saccharomyces cerevisiae with an apparent threshold. We show here that the DEL assay also detects the genotoxic activity of another aromatic amine carcinogen, o-anisidine, which is also negative in the Salmonella assay. We also show that the DEL assay distinguishes between o-anisidine and its non-carcinogenic structural analog 2, 4-dimethoxyaniline. We have investigated whether the ability of the DEL assay to detect the carcinogens and to distinguish between the carcinogen/non-carcinogen pair is linked to rises in intracellular free radical species following exposure to the carcinogens. Toxicity induced by all three compounds was reduced in the presence of the free radical scavenger and antioxidant N-acetyl cysteine, recombination induced by o-anisidine and o-toluidine was also reduced by N-acetyl cysteine. All three compounds induced oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate. Superoxide dismutase-deficient strains, however, were hypersensitive to cytotoxicity induced by o-toluidine and o-anisidine but not by the non-carcinogen 2,4-dimethoxyaniline, indicating a different potential for generating superoxide radical between the carcinogens and the non-carcinogen analog. The results indicate that the yeast DEL assay is a useful tool for investigating the genotoxic activity of aromatic amine carcinogens.  相似文献   

3.
A simple method for the measurement of the kinetics of reaction of potentially mutagenic alkyl halides with amines, based on the direct conductimetric monitoring of the quaternary ammonium salt produced in these reactions, is proposed and applied to the alkylation of p-nitrobenzylpyridine (NBP) and triethylamine (TEA) in different solvents. With respect to the classical colorimetric NBP-test, this method has the advantage that the rates can be measured continuously over the entire course of the reactions and the kinetic order and constants can be easily obtained. It is also shown that the previously proposed, NBP modified test', using simultaneously NBP and TEA, gives actually the sum of the rate constants for the reactions of the alkylating reagent with the two amines.  相似文献   

4.
Sulfonic acid esters are considered as potentially alkylating agents that may exert genotoxic effects in bacterial and mammalian cell systems. One possible source of human exposure stems from drug synthesis when the salt-forming agents methanesulfonic acid, benzenesulfonic acid or p-toluenesulfonic acid are used together with alcoholic solvents such as methanol, ethanol and propanol. In this study computer-assisted structural considerations and in vitro approaches (Ames mutagenicity test using Salmonella typhimurium strains TA98 and TA100, and the micronucleus test using L5178Y mouse lymphoma cells) were used to assess the genotoxic properties of 19 sulfonic esters. While all esters may be principally active as genotoxicants based on the presence of the sulfonate moiety, the statistical correlative multiple computer automated structure evaluation (MCASE) system (MC4PC version 1.0) using the Ames mutagenicity A2I module (version 1.54), rank-ordered the activity of the benzenesulfonic acid esters in the Ames test negligible due to an inactivating modulator and a deactivating fragment, whereas the methane- and toluenesulfonic acid esters were predicted to be positive in this test. In the Ames test, with the exception of the p-toluenesulfonic acid ethyl and iso-butyl esters, all compounds came out positive in Salmonella strain TA100. Methanesulfonic iso-propyl, sec-butyl and benzenesulfonic acid iso-propyl ester also showed mutagenic potential in strain TA98. In general, differences between results seen in Ames tests performed with or without metabolic activation were rather small. In L5178Y mouse lymphoma cells, benzenesulfonic acid n- and iso-butyl ester and p-toluenesulfonic acid iso-butyl ester did not increase the number of cells containing micronuclei. The other esters were positive in this micronucleus test; however, methanesulfonic acid iso-butyl ester was found to be only weakly positive at excessively cytotoxic concentrations. These compounds were generally found to be more potent with regard to micronucleus induction when tested without metabolic activation (20 h treatment). In conclusion, the iso-propyl esters of the three sulfonic acids under study were found to be the strongest mutagens, either when tested in the Ames test or the micronucleus assay, whereas p-toluenesulfonic acid iso-butyl ester was the only compound shown to be devoid of a genotoxic potential in both tests.  相似文献   

5.
HNO is genotoxic but its mechanism is not well understood. There are many possible mechanisms by which HNO can attack DNA. Since HNO is electrophilic, it may react with exocyclic amine groups on DNA bases and through a series of subsequent reactions form a deaminated product. Alternatively, HNO may induce radical chemistry through O(2)-dependent (or possibly O(2)-independent) chemistry. In cell free systems, experiments have shown that HNO does react with DNA, resulting in base oxidation and strand cleavage. In this study, we used a whole-cell system in the yeast Saccharomyces cerevisiae to study the mechanism of HNO induced DNA damage with Angeli's salt as HNO donor. The yeast DEL assay provided a measure of intrachromosomal recombination leading to DNA deletions. We also examined interchromosomal recombination leading to genomic rearrangements and used the canavanine (CAN) assay to study induction of forward point mutations. HNO was a potent inducer of DNA deletions and recombination but it was negative for induction of point mutations. This suggests that HNO causes DNA strand breaks rather than base damage. Genotoxicity was observed under aerobic and anaerobic conditions and NAC protected against HNO induced DNA deletions. Since HNO is genotoxic under anaerobic conditions, NAC probably protected against radicals generated by HNO independent of oxygen.  相似文献   

6.
Chromosomal rearrangements, including DNA deletions are involved in carcinogenesis. The deletion (DEL) assay scoring for DNA deletions in the yeast Saccharomyces cerevisiae is able to detect a wide range of carcinogens. Among approximately 60 compounds of known carcinogenic activity, the DEL assay detected 86% correctly whereas the Ames Salmonella assay detected only 30% correctly [R.J. Brennan, R.H. Schiestl, Detecting carcinogens with the yeast DEL assay, Methods Mol. Biol. 262 (2004) 111-124]. Since the DEL assay is highly inducible by DNA double strand breaks, this study examined the utility of the DEL assay for detecting clastogens. Ten model compounds, with varied mechanisms of genotoxicity, were examined for their effect on the frequency of DNA deletions with the DEL assay. The compounds tested were: actinomycin D, camptothecin, methotrexate and 5-fluorodeoxyuridine, which are anticancer agents, noscapine and furosemide are therapeutics, acridine, methyl acrylate and resorcinol are industrial chemicals and diazinon is an insecticide. The in vitro micronucleus assay (IVMN) in CHO cells, a commonly used tool for detection of clastogens, was performed on the same compounds and the results of the two assays were compared. The results of our study show that there is 70% concordance in the presence of metabolic activation (rat liver S9) and 80% concordance in the absence of metabolic activation between the DEL assay and the standard in vitro micronucleus assay. The lack of cytotoxicity observed for four of the ten compounds examined indicates limited diffusion of lipophilic compounds across the yeast cell wall. Thus, the development of a more permeable yeast tester strain is expected to greatly improve concordance of the DEL assay with the IVMN assay. The yeast DEL assay is inexpensive, amenable to automation and requires less expertise to perform than the IVMN. Thus, it has a strong potential as a robust, fast and economical screen for detecting clastogens in vitro.  相似文献   

7.
Both actively growing and resting cells of the yeast Saccharomyces cerevisiae were exposed to 900-MHz fields that closely matched the Global System for Mobile Communication (GSM) pulsed modulation format signals for mobile phones at specific absorption rates (SAR) of 0.13 and 1.3 W/kg. Two identical anechoic test chambers were constructed to perform concurrent control and test experiments under well-controlled exposure conditions. Using specific test strains, we examined the genotoxic potential of mobile phone fields, alone and in combination, with a known genotoxic compound, the alkylating agent methyl methansulfonate. Mutation rates were monitored by two test systems, a widely used gene-specific forward mutation assay at CAN1 and a wide-range assay measuring the induction of respiration-deficient (petite) clones that have lost their mitochondrial function. In addition, two further assays measured the recombinogenic effect of mobile phone fields to detect possible effects on genomic stability: First, an intrachromosomal, deletion-formation assay previously developed for genotoxic screening; and second, an intragenic recombination assay in the ADE2 gene. Fluctuation tests failed to detect any significant effect of mobile phone fields on forward mutation rates at CAN1, on the frequency of petite formation, on rates of intrachromosomal deletion formation, or on rates of intragenic recombination in the absence or presence of the genotoxic agent methyl methansulfonate.  相似文献   

8.
We have previously noted that the Physicians' Desk Reference (PDR) contains over 80 instances in which a drug elicited a positive genotoxic response in one or more in vitro assays, despite having no obvious structural features predictive of covalent drug/DNA interactive potential or known mechanistic basis. Furthermore, in most cases, these drugs were "missed" by computational genotoxicity-predicting models such as DEREK, MCASE and TOPKAT. We have previously reported the application of a V79 cell-based model and a 3D DNA docking model for predicting non-covalent chemical/DNA interactions. Those studies suggested that molecules that are very widely structurally diverse may be capable of intercalating into DNA. To determine whether such non-covalent drug/DNA interactions might be involved in unexpected drug genotoxicity, we evaluated, using both models where possible, 56 marketed pharmaceuticals, 40 of which were reported as being clastogenic in in vitro cytogenetics assays (chromosome aberrations/mouse lymphoma assay). As seen before, the two approaches showed good concordance (62%) and 26 of the 40 (65%) drugs exhibiting in vitro clastogenicity were predicted as intercalators by one or both methods. This finding provides support for the hypothesis that non-covalent DNA interaction may be a common mechanism of clastogenicity for many drugs having no obvious structural alerts for covalent DNA interaction.  相似文献   

9.
10.
11.
The yeast DEL assay measures the frequency of intrachromosomal recombination between two partially-deleted his3 alleles on chromosome XV. The his3Delta alleles share approximately 400bp of overlapping homology, and are separated by an intervening LEU2 sequence. Homologous recombination between the his3Delta alleles results in deletion of the intervening LEU2 sequence (DEL), and reversion to histidine prototrophy. In this study we have attempted to further extend the use of the yeast DEL assay to measure the frequency of chromosome XV gain events. Reversion to His(+)Leu(+) in the haploid yeast DEL tester strain RSY6 occurs upon non-disjunction of chromosome XV sister chromatids, coupled with a subsequent DEL event. Here we have tested the ability of the yeast DEL assay to accurately predict the aneugenic potential of the diversely-acting, known or suspected aneugens actinomycin D, benomyl, chloral hydrate, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and methotrexate. Actinomycin D and benomyl strongly induced aneuploidy. EMS and methotrexate modestly induced aneuploidy, while chloral hydrate and MMS failed to illicit any significant induction. In addition, by FACS-analysis of DNA content it was shown that the majority of both spontaneous- and chemically-induced His(+)Leu(+) revertants were heterodiploid. Thus, our results indicate endoreduplication of almost entire chromosome sets as a major mechanism of aneuploidy induction in haploid Saccharomyces cerevisiae.  相似文献   

12.
Genome rearrangements, such as DNA deletions, translocations and duplications, are associated with cancer in rodents and humans, and clastogens are capable of inducing such genomic rearrangements. The clastogen benzene and several of its toxic metabolites have been shown to cause cancer in animals. Benzene is associated with leukemia and other blood related disorders in humans. Benzene and metabolites tested negative in short-term bacterial mutation assays such as the Salmonella Mutagenicity Test and the Escherichia coli Tryptophan Reversion Assay. These assays, while reliable for the detection of point-mutagenic carcinogens, are incapable of detecting DNA strand break inducing xenobiotics. The yeast DEL assay is based on intrachromosomal recombination events resulting in deletions and is very sensitive in detecting DNA strand breaks. In previous results the DEL assay detected 17 Salmonella positive as well as 25 Salmonella negative carcinogens [Bishop, Schiestl, Hum. Mol. Genet. 9 (2000) 2427-2434]. The carcinogen benzene and its metabolites including phenol, catechol, p-benzoquinone and hydroquinone induced DEL recombination. The benzene metabolite 1,2,4-benzenetriol was negative. Interestingly, p-benzoquinone induced DEL recombination at a dose 300-fold lower than any of the other metabolites, suggesting that it might be responsible for much of benzene's genotoxicity. In addition, an excision repair deficient strain was used, but no difference was detected compared to the wildtype, indicating that DNA adducts subject to excision repair were not formed by benzene or its metabolites.  相似文献   

13.
The DEL assay in yeast detects DNA deletions that are inducible by many carcinogens. Here we use the colorimetric agent MTS to adapt the yeast DEL assay for microwell plate measurement of ionizing radiation-induced cell killing and DNA deletions. Using the microwell-based DEL assay, cell killing and genotoxic DNA deletions both increased with radiation dose between 0 and 2000 Gy. We used the microwell-based DEL assay to assess the effectiveness of varying concentrations of five different radioprotectors, N-acetyl-l-cysteine, l-ascorbic acid, DMSO, Tempol and Amifostine, and one radiosensitizer, 5-bromo-2-deoxyuridine. The microwell format of the DEL assay was able to successfully detect protection against and sensitization to both radiation-induced cytotoxicity and genotoxicity. Such radioprotection and sensitization detected by the microwell-based DEL assay was validated and compared with similar measurements made using the traditional agar-based assay format. The yeast DEL assay in microwell format is an effective tool for rapidly detecting chemical protectors and sensitizers to ionizing radiation and is automatable for chemical high-throughput screening purposes.  相似文献   

14.
15.
The extensive knowledge of the genetics of Drosophila melanogaster and the long experimental experience with this organism have made it of unique usefulness in mutation research and genetic toxicology. The development of somatic mutation and recombination tests (SMART) has provided sensitive, rapid and cheap assays for investigations of mutagenic and recombinogenic properties of chemicals. The present paper deals with the SMART wing spot assay, developed by Graf et al. (1984). The use of two genetic markers, multiple wing hair (mwh) and flare (flr) in the third chromosome, makes it possible to discern localized recombinogenic effects on the two intervals--the major, euchromatic, part of the chromosome, and the mostly heterochromatic centromere region. The distribution of induced mitotic recombination varied between test chemicals. Ethylene oxide caused a specific increase of twin spots, indicating a localized induction of somatic recombination in the centromere region. The wing spot assay has turned out to be suitable for combined treatment with chemicals in order to study antimutagenic and other modulating effects by mutagenic and recombinogenic chemicals. Examples of the use of this assay for such a purpose are presented in this paper. The inhibitor of poly ADP-ribosylation, 3-aminobenzamide (3AB), caused a pronounced increase of wing spots, induced by alkylating agents. The data indicate that this interaction between alkylating agents and 3AB is solely due to an effect on somatic recombination but not on point mutations. The inhibitor of topoisomerases, novobiocin, which presumably acts on the chromatin configuration, had different modulating effects on spots induced by methyl methanesulfonate (MMS) and ethylnitrosourea (ENU). Novobiocin essentially acted as an antirecombinogenic agent in cotreatment experiments with MMS and as antimutagenic agent with ENU. Attempts to interfere with mutagenic and recombinogenic effects of the radical-generating agents bleomycin, menadione and paraquat, by agents acting on the defence mechanisms against oxygen radicals, were essentially unsuccessful.  相似文献   

16.
The carcinogenicity of aniline-based aromatic amines is poorly reflected by their activity in short-term mutagenicity assays such as the Salmonella typhimurium reverse mutation (Ames) assay. More information about the mechanism of action of such carcinogens is needed. Here we report the effects on DEL recombination in Saccharomyces cerevisiae of the carcinogen 2,4-diaminotoluene and its structural isomer 2,6-diaminotoluene, which is reported to be non-carcinogenic. Both compounds are detected as equally mutagenic in the Salmonella assay. In the absence of any external metabolizing system both compounds were recombinagenic in the DEL assay, with the carcinogen being a more potent inducer of deletions than the non-carcinogen. In the presence of Aroclor-induced rat liver S9, however, the carcinogen 2,4-diaminotoluene became a 2-fold more potent inducer of deletions, and the non-carcinogen 2,6-diaminotoluene was rendered less toxic and no induced recombination was observed. 2,4-Diaminotoluene is distinguished from its non-carcinogen analog in the DEL assay, therefore, on the basis of a preferential activation of the carcinogen in the presence of a rat liver microsomal metabolizing system. Free radical species are produced by several carcinogens and have been implicated in carcinogenesis. We further investigated whether exposure of yeast to either 2,4-diaminotoluene or 2,6-diaminotoluene resulted in a rise in intracellular free radical species. The effects of the free radical scavenger N-acetylcysteine on toxicity and recombination induced by the two compounds and intracellular oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate were studied. Both 2,4- and 2,6-diaminotoluene produced free radical species in yeast, indicating that the reason for the differential activity of the compounds for induced deletions is not reflected in any difference in the production of free radical species.  相似文献   

17.
Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted.  相似文献   

18.
Gichner T 《Mutation research》2003,538(1-2):171-179
The purpose of this study was to determine if mutagen-induced DNA damage is correlated with the frequency of induced recombination events. The alkylating agents ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU), and the plant growth regulator and herbicide maleic hydrazide (MH) were compared in tobacco seedlings for their ability to induce DNA damage measured by the Comet assay, and recombination activity measured by the GUS gene reactivation assay, and by the somatic twin sectors assay. While EMS and ENU induced a dose-dependent increase in DNA damage in leaf nuclei, MH had no significant effect. By contrast, MH induced a 6-fold higher frequency of homologous recombination as expressed by the GUS assay and a 2.8-fold higher frequency of somatic twin sectors than after EMS treatments.  相似文献   

19.
A genetic system selecting for deletion events (DEL recombination) due to intrachromosomal recombination has previously been constructed in the yeastSaccharomyces cerevisiae. Intrachromosomal recombination is inducible by chemical and physical carcinogens. We wanted to understand better the mechanism of induced DEL recombination and to attempt to determine in which phase of the cell cycle DEL recombination is inducible. Yeast cells were arrested at specific phases of the cell cycle, irradiated with UV or γ-rays, and assayed for DEL recombination and interchromosomal recombination. In addition, the contribution of intrachromatid crossing-over to the number of radiation induced DEL recombination events was directly investigated at different phases of the cell cycle. UV irradiation induced DEL recombination preferentially in S phase, while γ-rays induced DEL recombination in every phase of the cell cycle including G1. UV and γ-radiation induced intrachromatid crossing over preferentially in G1, but it accounted at the most for only 14% of the induced DEL recombination events. The possibility is discussed that single-strand annealing or one-sided invasion events, which can occur in G1 and may be induced by a double-strand break intermediate, may be responsible for a large proportion of the induced DEL recombination events.  相似文献   

20.
In a colorimetric assay using 4-(p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester (= precursors C) were 0.08, 1.4 and less than or equal to 0.2, respectively, expressed in terms of the pH-dependent k2 rate constant of the equation dNOC/dt = k2.[C].[nitrite]2. The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min, respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated alpha-amino acids to bind to DNA in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed immediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号