首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of carcinogenic aromatic acethydroxamic acids (e.g.N-hydroxy-N-acetyl derivatives of 2-aminofluorene, 3-aminofluorene, 4-aminostilbene, 1-aminonaphthalene, 2-aminonaphthalene, 2-aminophenanthrene, and 4-aminobiphenyl) are readily oxidized by alkaline Fe(CN)63− or Ag2O. The free nitroxide radicals thus formed dismutate in organic solution according to second order kinetics to yield the corresponding N-acetoxy-N-acetylaminoarenes and nitrosoarenes. The structures of the latter products were established by mass and infrared spectrum analyses. Evicence was obtained for a similar one-electron oxidation of these acethydroxamic acids with horseradish peroxidase and H2O2 at pH 7. One-electron oxidation of N-hydroxy-2-acetylaminofluorene was also demonstrated with lactoperoxidase and human myeloperoxidase. The possible relevance of a similar peroxidative attack in vivo to the carcinogenic activities of some aromatic amines and amides is discussed.  相似文献   

2.
Selective and environmentally friendly oxidation of polysaccharides by hydrogen peroxide in the presence of iron tetrasulfophthalocyanine (FePcS) catalyst was studied in aqueous media. Oxidation under mild conditions led to the cleavage of the C–C bond of vicinal diols of glycoside units as a result of carbonyl and carboxyl formation. Optimized experimental conditions allowed oxidation of hydroxyethylcellulose (HEC), sodium carboxymethylcellulose (NaCMC), guar gum (GG), and inulin to the extent of 19, 30, 53, 23 carbonyl functions per 100 anhydroglucose units, respectively. Possible explanation for this relatively modest conversion is discussed. Over-oxidation phenomena appear to play an important role during the oxidation process.  相似文献   

3.
Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. In vitiligo severe oxidative stress occurs in the epidermis of these patients with accumulation of H2O2 in the 10(-3)M range together with a decrease in catalase expression/activity due to deactivation of the enzyme active site. It was also shown that the entire recycling of the essential cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin via pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) is affected by H2O2 oxidation of Trp/Met residues in the enzyme structure leading to deactivation of these proteins. Using fluorescence immunohistochemistry we now show that epidermal H2O2 in vitiligo patients yields also almost absent epidermal acetylcholinesterase (AchE). A kinetic analysis using pure recombinant human AchE revealed that low concentrations of H2O2 (10(-6)M) activate this enzyme by increasing the Vmax>2-fold, meanwhile high concentrations of H2O2 (10(-3)M) inhibit the enzyme with a significant decrease in Vmax. This result was confirmed by fluorescence excitation spectroscopy following the Trp fluorescence at lambdamax 280nm. Molecular modelling based on the established 3D structure of human AchE supported that H2O2-mediated oxidation of Trp(432), Trp(435), and Met(436) moves and disorients the active site His(440) of the enzyme, leading to deactivation of the protein. To our knowledge these results identified for the first time H2O2 regulation of AchE. Moreover, it was shown that H2O2-mediated oxidation of AchE contributes significantly to the well-established oxidative stress in vitiligo.  相似文献   

4.
We report kinetic data for the two-step electron transfer (ET) oxidation and reduction of the two-domain di-heme redox protein Pseudomonas stutzeri cytochrome (cyt) c4 by [Co(bipy)3]2+/3+ (bipy = 2,2′-bipyridine). Following earlier reports, the data accord with both bi- and tri-exponential kinetics. A complete kinetic scheme includes both “cooperative” intermolecular ET between each heme group and the external reaction partner, and intramolecular ET between the two heme groups. A new data analysis scheme shows unequivocally that two-ET oxidation and reduction of P. stutzeri cyt c4 is entirely dominated by intermolecular ET between the heme groups and the external reaction partner in the ms time range, with virtually no contribution from intramolecular interheme ET in this time range. This is in striking contrast to two-ET electrochemical oxidation or reduction of P. stutzeri cyt c4 for which fast, ms to sub-ms intramolecular interheme ET is a crucial step. The rate constant dependence on the solvent viscosity has disclosed strong coupling to both a (set of) frictionally damped solvent/protein nuclear modes and intramolecular friction-less “ballistic” modes, indicative of notable protein structural mobility in the overall two-ET process. We suggest that conformational protein mobility blocks intramolecular interheme ET in bulk homogeneous solution but triggers opening of this gated ET channel in the electrochemical environment or in the membrane environment of natural respiratory cyt c4 function.  相似文献   

5.
Proton NMR spectra of a dimeric phospholipase A2 from Trimeresurus flavoviridis have been recorded. N-1 proton resonances of the tryptophan indole rings have been detected and assigned to specific positions, Trp-3/Trp-30, Trp-68 and Trp-108, by comparing the spectra of the enzyme derivatives with tryptophans oxidized to differing extents. Photo-CIDNP experiments have revealed that Trp-68 and Trp-108 are exposed while Trp-3 and Trp-30 are buried in the molecule. This is consistent with the X-ray crystal structure of a homologous phospholipase A2 from Crotalus atrox where residues 3 and 30 are located at a dimer interface, but inconsistent with the results of stepwise oxidation of tryptophan residues.  相似文献   

6.
Among various metal ions of physiological interest, Cu2+ is uniquely capable of catalyzing the oxidation of NADH by H2O2. This oxidation is stimulated about fivefold in the presence of imidazole. A similar activating effect is found for some imidazole derivatives (1-methyl imidazole, 2-methyl imidazole, andN-acetyl-L-histidine). Some other imidazole-containing compounds (L-histidine,L-histidine methyl ester, andL-carnosine), however, inhibit the Cu2+-catalyzed peroxidation of NADH. Other chelating agents such as EDTA andL-alanine are also inhibitory. Stoichiometry for NADH oxidation per mole of H2O2 utilized is 1, which excludes the possibility of a two-step oxidation mechanism with a nucleotide free-radical intermediate. About 92% of the NADH oxidation product can be identified as enzymatically active NAD+. D2O, 2,5-dimethylfuran, and 1,4-diazabicyclo [2.2.2]-octane have no significant effect on the oxidation, thus excluding1O2 as a mediator. Similarly, OH· is also not a likely intermediate, since the system is not affected by various scavengers of this radical. The results suggest that a copper-hydrogen peroxide intermediate, when complexed with suitable ligands, can generate still another oxygen species much more reactive than its parent compound, H2O2.  相似文献   

7.
Tyrosinase (EC 1.14.18.1) is a widely distributed type 3 copper enzyme participating in essential biological functions. Tyrosinases are potential biotools as biosensors or protein crosslinkers. Understanding the reaction mechanism of tyrosinases is fundamental for developing tyrosinase-based applications. The reaction mechanisms of tyrosinases from Trichoderma reesei (TrT) and Agaricus bisporus (AbT) were analyzed using three diphenolic substrates: caffeic acid, L-DOPA (3,4-dihydroxy-l-phenylalanine), and catechol. With caffeic acid the oxidation rates of TrT and AbT were comparable; whereas with L-DOPA or catechol a fast decrease in the oxidation rates was observed in the TrT-catalyzed reactions only, suggesting end product inhibition of TrT. Dopachrome was the only reaction end product formed by TrT- or AbT-catalyzed oxidation of L-DOPA. We produced dopachrome by AbT-catalyzed oxidation of L-DOPA and analyzed the TrT end product (i.e. dopachrome) inhibition by oxygen consumption measurement. In the presence of 1.5 mM dopachrome the oxygen consumption rate of TrT on 8 mM L-DOPA was halved. The type of inhibition of potential inhibitors for TrT was studied using p-coumaric acid (monophenol) and caffeic acid (diphenol) as substrates. The strongest inhibitors were potassium cyanide for the TrT-monophenolase activity, and kojic acid for the TrT-diphenolase activity. The lag period related to the TrT-catalyzed oxidation of monophenol was prolonged by kojic acid, sodium azide and arbutin; contrary it was reduced by potassium cyanide. Furthermore, sodium azide slowed down the initial oxidation rate of TrT- and AbT-catalyzed oxidation of L-DOPA or catechol, but it also formed adducts with the reaction end products, i.e., dopachrome and o-benzoquinone.  相似文献   

8.
During the lead optimization of NK(1)/NK(3) receptor antagonists program, a focused exploration of molecules bearing a lactam moiety was performed. The aim of the investigation was to identify the optimal position of the carbonyl and hydroxy methyl group in the lactam moiety, in order to maximize the in vitro affinity and the level of insurmountable antagonism at both NK(1) and NK(3) receptors. The synthesis and biological evaluation of these novel lactam derivatives, with potent and balanced NK(1)/NK(3) activity, were reported in this paper.  相似文献   

9.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity.Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

10.
2-methyl-1,4-naphtoquinone 1 (vitamin K3, menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E1/2) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (EA). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (EA) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.  相似文献   

11.
Two new cobalt(III) complexes of symmetric hexadentate ligand with N6 [1,10-bis(2-picolinamide)-4,7-diazadecane (pycdpnen)] and N4S2 [1,8-bis(2-picolinamide)-3,6-dithiaoctane (pycdadt)] donor set atoms have been synthesized as perchlorate salts and characterized by spectroscopic methods. All two ligands with strong-field pyridylcarboxamido N donor stabilize Co(III) as demonstrated by the facile oxidation of the cobalt center. The structures of [Co(pycdpnenH−2)](ClO4) (1) and [Co(pycdadtH−2)](ClO4) · H2O (2) investigated by COSY, HMBC, HMQC and NOESY NMR studies show that compounds 1 and 2 have the same geometrical configuration. The X-ray analysis reveals that complex 2 crystallizes in a orthorhombic space group Pccn. The cation [Co(pycdadtH−2)]+ is distorted octahedral with the two pyridyl groups in cis position.  相似文献   

12.
6-formylpterin (6FP) has been reported to produce reactive oxygen species (ROS) such as *O2- and H2O2 from O2 in the presence of NADH under light condition. In the present study, we prepared a variety of 6FP derivatives and found that 2-(N,N-dimethylaminomethyleneamino)-6-formyl-3-pivaloylpteridin-4-one and 2-(N,N-dimethylaminomethyleneamino)-6-formyl-3-methylpteridin-4-one, in which the 2-amino groups are modified by a dimethylaminomethylene group and the 3-positions by pivaloyl and methyl groups and 2-amino-6-formyl-3-methylpteridin-4-one in which the amino group at the 2-position is free and the 3-position is modified by a methyl group generated H2O2 from O2 on oxidation of NADH to NAD+ in the dark. However, 6FP and 2-(N,N-dimethylaminomethyleneamino)-6-formylpteridin-4-one, in which the 3-position is free did not yield H2O2. These results indicate that modification of the 3-position is essential to make the activities of 6FP available in the dark and would be suggestive for designing pharmaceutical compounds that generate appropriate and controllable amounts of ROS in vivo.  相似文献   

13.
S-Nitrosocompounds are formed when aqueous solutions of cysteine or glutathione are exposed to ultrasound (880 kHz) in air. The yield of the S-nitrosocompounds was as high as 10% for glutathione and 4% for cysteine of the initial thiol concentrations (from 0.1 to 10 mM) in the aqueous solutions. In addition to the formation of S-nitrosocompounds, thiol oxidation to disulfide forms was observed. After the oxidation of over 70% of the sulfhydryl groups, formation of peroxide compounds as well as cysteic acid derivatives was recorded. The formation of the peroxide compounds and peroxide radicals in the ultrasound field reduced the yield of S-nitrosocompounds. S-Nitrosocompounds were not formed when exposing low-molecular-weight thiols to ultrasound in atmospheres of N2 or CO. In neutral solutions, ultrasound-exposed cysteine or glutathione released NO due to spontaneous degradation of the S-nitrosocompounds. N2O3, produced due to the spontaneous degradation of the S-nitrosocompounds in air, nitrosylated sulfhydryl groups of glutathione manifested in the appearance of new absorption bands at 330 and 540 nm. The nitrogen compounds formed in an ultrasound field modified the sulfhydryl groups of apohemoglobin and serum albumin. The main target for ultrasound-generated oxygen free radicals were cystine residues oxidized to cysteic acid residues.  相似文献   

14.
Properties of purified recombinant human polyamine oxidase,PAOh1/SMO   总被引:4,自引:0,他引:4  
The discovery of an inducible oxidase whose apparent substrate preference is spermine indicates that polyamine catabolism is more complex than that originally proposed. To facilitate the study of this enzyme, the purification and characterization of the recombinant human PAOh1/SMO polyamine oxidase are reported. Purified PAOh1/SMO oxidizes both spermine (K(m)=1.6 microM) and N(1)-acetylspermine (K(m)=51 microM), but does not oxidize spermidine. The purified human enzyme also does not oxidize eight representative antitumor polyamine analogues; however, specific oligamine analogues were found to be potent inhibitors of the oxidation of spermine by PAOh1/SMO. The results of these studies are consistent with the hypothesis that PAOh1/SMO represents a new addition to the polyamine metabolic pathway that may represent a new target for antineoplastic drug development.  相似文献   

15.
The enzyme-catalysed oxidation of indole-3-acetic acid (IAA) was sytematically investigated with respect to enzyme source and cofactor influence using differential spectrophotometry and oxygen uptake measurement. Commercially-available horseradish peroxidase (HRP) and a peroxidase preparation from Prunus phloem showed identical catalytic properties in degrading IAA. There was no lag phase of IAA oxidation with any of the reaction mixtures tested. Monophenols exhibited a much stronger stimulatory effect than inorganic cofactors, but during the incubation of IAA the phenols were also gradually oxidised. Hydrogen peroxide (H2O2) in combination with monophenols accelerated peroxidation of the monophenol and IAA oxidation simutaneously. Since photometric determination of IAA was affected by oxidation products of dichlorophenol or phenol contamination of the enzyme preparation used, the standard IAA absorption measurements appear to be susceptible to methodological errors. Under certain incubation conditions a catalase-like activity of HRP during the course of IAA oxidation was noted and substrate inhibition was observed above 1.5 × 10\s-4 M IAA. Some concepts concerning the mode of activation of the enzyme-catalysed IAA oxidation are deduced from the experimental results.  相似文献   

16.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

17.
Methyl santalbate (methyl trans-11-octadecen-9-ynoate) from Sandal wood seed oil, Santalbum alum) was epoxidized to methyl trans-11,12-epoxy-octadec-9-ynoate (1). Treatment of compound 1 with tetrabutylammonium dihydrogentrifluoride, and boron trifluoride etherate gave the corresponding anti- (2a) (57%) and syn- (2b) (35%) fluorohydrin derivatives, respectively. These reactions were regio- and stereoselective in nature. The structures of the anti- and syn- isomers were confirmed by NMR spectroscopy. Ring opening of the epoxy system of compound 1 with lithium chloride gave the anti-chlorohydrin derivative (3) (89%). Oxidation of either compound 2a or 2b gave the same fluoro-keto acetylenic fatty ester (4) (75%), and compound 3 on chromic acid oxidation yielded the corresponding chloro-keto acetylene (5) (73%). Isomerization of compounds 4 and 5 with potassium carbonate in dichloromethane furnished the requisite fluoro-allenic (6) (63%, methyl 11-fluoro-12-oxo-9,10-octadecadienoate) and chloro-allenic (7) (80%, methyl 11-chloro-12-oxo-9,10-octadecadienoate) C(18) fatty esters. All products were confirmed by a combination of spectrometric and spectroscopic techniques.  相似文献   

18.
Reaction centers (RCs) of purple bacteria are uniquely suited objects to study the mechanisms of the photosynthetic conversion of light energy into chemical energy. A recently introduced method of higher order derivative spectroscopy [I.K. Mikhailyuk, H. Lokstein, A.P. Razjivin, A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives, J. Biochem. Biophys. Methods 63 (2005) 10-23] was used to analyze the NIR absorption spectra of RC preparations from Rhodobacter (R.) sphaeroides strain 2R and Blastochloris (B.) viridis strain KH, containing bacteriochlorophyll (BChl) a and b, respectively. Q(y) bands of individual RC porphyrin components (BChls and bacteriopheophytins, BPheo) were identified. The results indicate that the upper exciton level P(y+) of the photo-active BChl dimer in RCs of R. sphaeroides has an absorption maximum of 810nm. The blue shift of a complex integral band at approximately 800nm upon oxidation of the RC is caused primarily by bleaching of P(y+), rather than by an electrochromic shift of the absorption band(s) of the monomeric BChls. Likewise, the disappearance of a band peaking at 842nm upon oxidation of RCs from B. viridis indicates that this band has to be assigned to P(y+). A blue shift of an absorption band at approximately 830nm upon oxidation of RCs of B. viridis is also essentially caused by the disappearance of P(y+), rather than by an electrochromic shift of the absorption bands of monomeric BChls. Absorption maxima of the monomeric BChls, B(B) and B(A) are at 802 and 797nm, respectively, in RCs of R. sphaeroides at room temperature. BPheo co-factors H(B) and H(A) peak at 748 and 758nm, respectively, at room temperature. For B. viridis RCs the spectral positions of H(B) and H(A) were found to be 796 and 816nm, respectively, at room temperature.  相似文献   

19.
The direct immobilization of glucose oxidase (GOD) on TiO2/SiO2 nanocomposite and its application as glucose biosensor were investigated. The room-temperature phosphorescence of TiO2/SiO2 nanocomposite can be quenched by hydrogen peroxide (H2O2). The detection of glucose may be accomplished by monitoring the formation of hydrogen peroxide which generated in the oxidation process of glucose with the catalysis of GOD. To our surprise, by using a 96-hole polyporous plate accessory of fluorescence spectrophotometer, the biosensor exhibits excellent linear response to glucose concentrations ranging from 1.0 × 10−9 to 1.0 × 10−2 M with a detection limit of 1.2 × 10−10 M. The TiO2/SiO2 nanocomposite can be used as both supporting material and signal transducer. The phosphorescence intensity and color of the biosensor change obviously and even could be observed with naked eyes by continuous addition of glucose. Based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite, a new method of solid substrate-room-temperature phosphorimetry (SS-RTP) for glucose determination is proposed. A glucose biosensor was fabricated with wide determination concentration range, low detection limit, high sensitivity, and fast response time. And the biosensor has been successfully applied to the determination of glucose in human blood serum. The coacervation of GOD enzyme and its interaction with TiO2/SiO2 nanocomposite enlarge the surface area and enhance the chemical stability of GOD. The nice biocompatibility, large surface area, good chemical stability and nontoxicity of the TiO2/SiO2 nanocomposite have made this material suitable for functioning as biosensor.  相似文献   

20.
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680+, the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号