首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of volar (hand) pad area were made for 244 specimens, representing 12 species and 4 genera of galagos (sub-family Galaginae). When corrected for body weight, statistically significant differences were identified, at both the genus and species levels in the areas of the volar pads. Most informative, in terms of taxonomic differences, were measurements of two of the five pads; interdigjtal pad number 4 and thenar pad number 5. Closely related species were distinguishable on the basis of these measurements. The thick-tailed galago (Otolemur crassicaudatus) was separate from Garnett's galago (O. garnettii) and the specific status of the silver greater galago (O. argentatus) was supported. Likewise, the two needle-clawed galagos (Euoticus elegantulus andE. pallidus), recently separated on mitochodrial DNA grounds, were found to differ significantly in their volar pad morphology. These studies show that comparative studies of volar hand pad morphology provide a novel approach to the re-assessment of galago taxonomy, and may be applicable also in taxonomic studies of other prosimian groups.  相似文献   

2.
The recent detection of dermal ridge configurations on the volar pads of the rat (Rattus norvegicus) has created opportunities for experimental studies of dermatoglyphics. In the present work, the palmar and plantar surfaces of the rat were studied to establish the feasibility of comparative rat and human dermatoglyphic investigations. The studied features included the volar pads and flexion creases. The number and location of the palmar and plantar pads in the rat were found to be similar to those of humans. The exception was a previously unrecognized small pad on the palms and soles of the rat, located on the radial and tibial side, respectively, of the proximal component of the first interdigital pad. This pad has no parallel in human embryos. Rats were found to have flexion creases in the non-pad areas between the neighboring pads, similar in location and appearance to those of humans. Unlike humans, however, rats also have boundary creases, separating the pad and non-pad areas. The marked similarities in the morphology of the volar areas between rats and humans make the rat ideally suitable for experimental studies of dermatoglyphics and flexion creases. Results of such studies should be applicable to human developmental dermatoglyphics, including those pertaining to medical disorders. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Attempts to gain a better understanding of the relationship between the epidermal ridge patterns (dermatoglyphics) and flexion creases on the volar aspects of human hands and feet and specific medical disorders led to a search for a suitable animal model, allowing studies of the fetal development of the pertinent structures. A common experimental animal, the rat (Rattus norvegicus), was found to be an excellent candidate, owing to the strong resemblance of the volar pads and flexion creases on its palmar and plantar surfaces to those of human subjects. A hereditary preaxial polydactyly mouse (Pdn) provides an opportunity to study the effects of this malformation on the surrounding morphological structures and, specifically, on the volar pads, i.e., the sites over which the dermatoglyphic patterns develop. The hands and feet of the wild‐type (+/+) mice show no anomalies, and their major pad and flexion crease configurations correspond to those of normal rats. The heterozygous (Pdn/+) mice, in spite of having a thumb/big toe with a duplicated distal phalanx on their hands/feet, did not display any alterations in palmar/plantar pads. The homozygous (Pdn/Pdn) mice have a protrusion in the thenar area and one to three supernumerary digits on the preaxial portion of both the hands and feet. The effect of these anomalies was found to be limited to the pad and flexion crease configurations in the preaxial areas; the postaxial sites were not affected. The original number of pads on the thenar/first interdigital areas of Pdn/Pdn mice was apparently identical to that of the +/+ and Pdn/+ mice. The preaxial protrusion, however, affected the number, size, and location of the pads observed in the newborn mice, resulting in varying pad configurations, such as fused and scattered pads or a pad cluster formed by gathering the neighboring pads. These pad modifications were induced by the preaxial plantar/palmar protrusion only and were not affected by the presence of supernumerary preaxial digits. In view of the similarities in the morphology and fetal development of human and mouse distal limbs, the present study is relevant to human subjects, particularly to the understanding of the significance of dermatoglyphic variations in individuals with specific medical disorders. Future studies of naturally occurring or experimentally induced limb malformations in mice or rats should provide valuable insights into the development of human hands and feet and into factors contributing to their congenital anomalies. J. Morphol. 239:87–96, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Retinoic acid inhibits proliferation of hormone-dependent, but not hormone-independent breast cancer cells. Retinoic acid-induced changes in cellular proliferation and differentiation are associated with disturbances in growth factor signaling and frequently with changes in protein kinase C expression. PKCδ, ϵ, and ζ are expressed in both hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) cell lines. Retinoic acid arrested T-47D proliferation, induced PKCα expression and concomitantly repressed PKCζ expression. The changes in PKCα and PKCζ reflect retinoic acid-induced changes in mRNA. In contrast, retinoic acid had no effect on growth, or PKC expression in MDA-MB-231 cells. Growth arrest and the induction of PKCα, but not the reduction in PKCζ, resulted from selective activation of RARα. In total, these results support an important role for PKCα in mediating the anti-proliferative action of retinoids on human breast carcinoma cells. J. Cell. Physiol. 172:306–313, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Normal human skin was maintained in organ culture under chemically defined conditions. All-trans retinoic acid was added to the culture medium at the final concentration of 5 mumol/l. After 5 days in culture samples were either harvested for electron microscopy or labeled with 3H-glucosamine for 24 h. After labeling, epidermis was separated from dermis and both tissue compartments were analyzed for the content of 3H-labeled glycosaminoglycans (GAGs) using CPC-precipitation and thin layer chromatography after enzymatic degradation into specific disaccharides. Retinoic acid caused a marked change in the epidermal tissue architecture. The epidermal cells were flattened and contained fewer desmosomes and tonofilaments than control explants. Retinoic acid induced accumulation of fine granular material in the intercellular spaces in the upper, and less dense, flocculent material in the lower epidermis. The analysis of 3H-glycosaminoglycans showed that in the epidermis retinoic acid elevated the amount of labeled hyaluronate by 70%, whereas sulfated GAGs were not significantly increased. In dermis the incorporation of 3H-glucosamine into neither hyaluronate nor sulfated GAGs was stimulated by the retinoic acid. It is concluded that retinoic acid significantly modifies the differentiation of normal adult human epidermis by decreasing cytoskeleton components and by inducing the synthesis of new intercellular material, at least a part of which is hyaluronic acid. As a consequence, the cohesion between the epidermal cells was apparently weakened.  相似文献   

6.
The adaptive radiation of mammalian clades has involved marked changes in limb morphology that have affected not only the skeleton but also the integumentary structures. For example, didelphid marsupials show distinct differences in nail and claw morphology that are functionally related to the evolution of arboreal, terrestrial, and aquatic foraging behaviors. Vespertilionoid bats have evolved different volar pad structures such as adhesive discs, scales, and skin folds, whereas didelphid marsupials have apical pads covered either with scales, ridges, or small cones. Comparative analysis of pad and claw development reveals subtle differences in mesenchymal and ectodermal patterning underlying interspecific variation in morphology. Analysis of gene expression during pad and claw development reveals that signaling molecules such as Msx1 and Hoxc13 play important roles in the morphogenesis of these integumentary structures. These findings suggest that evolutionary change in the expression of these molecules, and in the response of mesenchymal and ectodermal cells to these signaling factors, may underlie interspecific differences in nail, claw, and volar pad morphology. Evidence from comparative morphology, development, and functional genomics therefore sheds new light on both the patterns and mechanisms of evolutionary change in mammalian limb integumentary structures.  相似文献   

7.
The effects of the hereditary malformation of Hammertoe mutant mice (gene symbol Hm) on the digital pads and dermal ridge configurations on their hindlimbs were examined. In the wild‐type (+/+) mice with normally separated digits, dermal ridges developed only on the pads. Heterozygous (Hm/+) and homozygous (Hm/Hm) mutant mice, however, had a broad big toe, fused interdigital soft tissues, reduced claws, an extra rudimentary postaxial digit and camptodactyly. The dermal ridges appeared not only on the pads, affected in their number and configurations, but also on the ventral surface of the interdigital webbings and postaxial marginal area exhibiting an extra rudimentary digit and webbing. These aberrant configurations may be related to the abnormal occurrence of programmed cell death (PCD) in the interdigital zones and the postaxial marginal portion in Hm/+ and Hm/Hm mice. That is, the diminished cell death may fail to decrease the cell density in the interdigital zones and postaxial marginal portion and result in the webbing and an extra rudimentary digit and webbing, respectively. Simultaneously, it could also interrupt the migration of surviving cells of these areas toward the neighboring digits and the distal area of the sole and produce the ectopic dermal ridges on the way to the as yet unformed (presumptive) digital and plantar volar pads. The present findings suggest that normal interdigital and pre/postaxial PCD contributes not only to the separation of digits, the initial formation of individual digits of different sizes, and the inhibition of the extra digit but also to the development of the presumptive digital and plantar pads, including dermal ridges. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Previous studies have shown the taxonomic value of vocal repertoires and hand (volar) pad characteristics in the classification of cryptic nocturnal primates such as bush babies. However, no study included quantitative comparisons within the geographical range of any one species. We investigated levels of intraspecific variation in calls and hand pad characteristics of the southern lesser bush baby (Galago moholi), using the northern lesser bush baby (Galago senegalensis) for interspecific comparisons. Examination of calls recorded from different regions along a transect of 1500 km across southern Africa revealed low levels of intraspecific variation in Galago moholi, whereas comparisons with homologous call-types in G. senegalensis revealed them to be significantly different. Volar pad measurements across the ranges of both species also showed low levels of intraspecific variation and relatively high interspecific variation. These findings demonstrate that vocal and volar pad characteristics can be used as consistent measures of difference between species that look almost identical. These methods provide a practical means of distinguishing between cryptic species, whether in the field, in captivity, or, in the case of volar pads, of preserved specimens.  相似文献   

9.
Cleft palate is one of the most common birth defects. Several environment factors are involved in the disorder, such as smoking, vitamin deficiency and teratogens. We investigated the teratogenic agent phenytoin and extract of the immunostimulant Echinacea purpurea in the etiology of cleft palate associated with the proliferation and apoptosis of mouse embryonic palatal mesenchymal (MEPM) cells. We measured the effects of phenytoin, E. purpurea extract, and the mixture of phenytoin and E. purpurea extract on the cell viability of MEPM cells by CCK‐8 assay and on the proliferation and apoptosis of MEPM cells by BrdU labeling assay, flow cytometry, and TUNEL assay. Exposure to phenytoin for 24 h inhibited cell proliferation and increased cell apoptosis of MEPM cells, and E. purpurea extract had the reverse effect. Importantly, treatment with the mixture of phenytoin and E. purpurea extract increased the proliferation and decreased the apoptosis of MEPM cells as compared with treatment with phenytoin alone. The teratogenic effect of phenytoin on cleft palate is associated with the proliferation and apoptosis of MEPM cells, and E. purpurea extract may have a protective effect. J. Cell. Biochem. 112: 1311–1317, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
11.
BACKGROUND: Nitrofen is a diphenyl ether that induces congenital diaphragmatic hernia (CDH) in rodents. Its mechanism of action has been hypothesized as inhibition of the retinaldehyde dehydrogenase (RALDH) enzymes with consequent reduced retinoic acid signaling. METHODS: To determine if nitrofen inhibits RALDH enzymes, a reporter gene construct containing a retinoic acid response‐element (RARE) was transfected into HEK‐293 cells and treated with varying concentrations of nitrofen in the presence of retinaldehyde (retinal). Cell death was characterized by caspace‐cleavage microplate assays and terminal deoxynucleotidyl transferase dUTP nick end‐labeling (TUNEL) assays. Ex vivo analyses of cell viability were characterized in fetal rat lung explants using Live/Dead staining. Cell proliferation and apoptosis were assessed using fluorescent immunohistochemistry with phosphorylated histone and activated caspase antibodies on explant tissues. Nile red staining was used to identify intracellular lipid droplets. RESULTS: Nitrofen‐induced dose‐dependent declines in RARE‐reporter gene expression. However, similar reductions were observed in control‐reporter constructs suggesting that nitrofen compromised cell viability. These observed declines in cell viability resulted from increased cell death and were confirmed using two independent assays. Ex vivo analyses showed that mesenchymal cells were particularly susceptible to nitrofen‐induced apoptosis while epithelial cell proliferation was dramatically reduced in fetal rat lung explants. Nitrofen treatment of these explants also showed profound lipid redistribution, primarily to phagocytes. CONCLUSIONS: The observed declines in nitrofen‐associated retinoic acid signaling appear to be independent of RALDH inhibition and likely result from nitrofen induced cell death/apoptosis. These results support a cellular apoptotic mechanism of CDH development, independent of RALDH inhibition. Birth Defects Res (Part B) 89:223–232, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Summary Epidermal cell proliferation and differentiation were investigated in vitro after exposure to the anionic surfactant sodium dodecyl sulfate (SDS). Human skin organ cultures were exposed topically to various concentrations of SDS for 22 h, after which the irritant was removed. Cell proliferation was measured immunohistochemically by incorporation of bromodeoxyuridine (BrdU) into the DNA of cells during S-phase, while the expression of transglutaminase and involucrin were used as markers of differentiation. Cell proliferation was moderately increased at concentrations of SDS that did not affect the histomorphology (0.1% and 0.2% SDS). A marked increase of cell proliferation was observed 22 to 44 h after removal of SDS at a concentration (0.4%) that induced slight cellular damage. Exposure of human skin organ cultures to a toxic concentration of SDS (1.0%) led to decreased cell proliferation. Transglutaminase and involucrin were expressed in the more basal layers of the epidermis after exposure to 0.4% or 1.0% SDS. Moreover, intra-epidermal sweat gland ducts were positive for transglutaminase at these irritant concentrations. These in vitro data demonstrate that SDS-induced alterations of epidermal cell kinetics, as described in vivo are at least partly due to local mechanisms and do not require the influx of infiltrate cells. However, we were unable to relate the altered cell kinetics to the release of interleukin-1α or interleukin-6. Furthermore, supplementation of the culture medium with 12-hydroxyeicosantetraenoic acid did not affect epidermal cell proliferation. Rabbit skin cultures appeared more sensitive to SDS than human skin. At nontoxic doses, the irritant induced an increase of epidermal cell proliferation, similar to that observed in human skin discs.  相似文献   

13.
BACKGROUND: The mechanism underlying the development of aberrant phalangeal pads and dermal ridge configurations in malformed limbs is not well understood. The forelimbs of Hammertoe (Hm) mutant mouse fetuses were examined sequentially to clarify the relationship between the occurrence of abnormal programmed cell death (PCD) and the formation of phalangeal pads and dermal ridge patterns. METHODS: Relevant morphological features, with special emphasis on pads and dermal ridge configurations, were inspected on the exposed dermal surface of the forelimbs of adult Hm mutant mice. The forelimbs of Hm mutant mouse fetuses (GD13-18) and newborns were examined histologically. The forelimbs of GD13 fetuses were subjected to Nile blue (NB) vital staining for in situ labeling of PCD. RESULTS: In the forelimbs of +/+ mice, the formation of dermal ridges was confined to pads, while in Hm/+ and Hm/Hm animals, which have interdigital webbing involving digits II-V, dermal ridges were formed also on the ventral side of the webbing, specifically on its lateral margins between the neighboring digits and on the medial margin of the webbing extending toward the palmar pad. PCD was decreased in the interdigital zones II-IV in GD13 Hm/+ and Hm/Hm fetuses. CONCLUSIONS: Reduced PCD interdigital tissue of Hm/+ and Hm/Hm fetuses may result in the failure of physiological elimination of interdigital cells and in the persistence of soft tissue webbing between digits. The failure of PCD to occur may also interrupt the interdigital surviving cells to reach the neighboring digits and the distal area of the palm, thereby producing ectopic dermal ridges. It seems that interdigital PCD contributes not only to digit separation but also to the development of digital and palmar pads.  相似文献   

14.
Summary We investigated the effects of conditioned media derived from mouse mammary fat pads on the proliferation of CL-S1 cells, an epithelial cell line originally isolated from a preneoplastic mammary outgrowth line. Cell proliferation in vitro in serum-free defined medium was compared to that in this medium conditioned using intact mammary fat pad pieces or isolated fat pad adipocytes. Culture medium was conditioned by incubating the conditioning material in defined culture medium for 24 h at 37°C. Conditioned medium induced CL-S1 proliferation as much as 10- to 20-fold above the minimal levels of growth in control cultures after 13 d of culture. The growth-stimulatory factor(s) had an apparent molecular weight of greater than 10 kDa. This growth-stimulatory activity was both heat and trypsin stable. Because the role of adipose tissue is to store and release lipids, we next tested whether lipids are released during medium conditioning. The lipid composition of the fat pad conditioned medium was characterized using both thin layer and gas liquid chromatography. These lipid analyses indicated that the fat pad pieces released significant amounts of fatty acids and phospholipids into the medium during the conditioning period. The free fatty acid composition included both saturated and unsaturated molecules, and about 80% of the total fatty acids consisted of palmitate, stearate, oleate, and linoleate. These same fatty acids were a structural component of the majority of phospholipid found in the medium. The addition of palmitate or stearate to defined medium had no effect or was inhibitory for CL-S1 proliferation, depending on the concentration used. Defined medium supplemented with oleate, arachidonate, or linoleate induced CL-S1 proliferation, and the inhibitory effects of palmitate and stearate were overcome by addition of oleate and linoleate. These data indicate that both unsaturated and saturated fatty acids are released from intact adipose cells of the mouse mammary fat pad and that fatty acids can influence the growth of prenoplastic mouse mammary epithelium. Thus, unsaturated fatty acids, perhaps in conjunction with other substances released simultaneously, are candidate molecules for the substances that mediate the effect of adipose tissue on growth of epithelium. This work was supported in part by a grant from the American Institute for Cancer Research; grant CA 46885 from the National Institutes of Health, Bethesda, MD; and by State of Washington initiative 171.  相似文献   

15.
视黄类受体与视黄酸致畸作用关系   总被引:2,自引:1,他引:1  
李增刚  孙开来 《遗传》2004,26(5):735-738
视黄酸(维甲酸)可引起包括人在内的多种动物胚胎畸形,其生物活性是由一系列视黄酸受体及其配体介导的。其中视黄类受体RAR起主要作用,RAR的配体为强致畸物,相对致畸活性由强至弱依次为配体α、配体β和配体γ。视黄酸受体RXR的配体无致畸活性,但是可加强RAR激动剂的某些致畸郊应。视黄酸受体还可通过其它基因的表达而影响胚胎发育。对视黄类受体基因突变和不同视黄类受体及其配体与致畸作用的关系,以及此类受体对其它基因表达的调节作简要综述。 Abstract: Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the legands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandα、ligandβ and ligandγ. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.  相似文献   

16.
To determine whether PKH26 labeling affects the morphologies, phenotypes, proliferation, and secretion abilities of human umbilical mesenchymal stromal cells (HUMSCs) were investigated. Isolated HUMSCs were labeled with PKH26, and cell morphology was observed under microscope. Cell cycle, apoptotic cell death, expression of PKH26, and the proliferation rate were evaluated. Additionally, fluorescence intensity of PKH26 labeling at different passage times was quantified. There were no detectable differences in cell morphology, cell growth, and proliferation rate after PKH26 labeling. In addition, fluorescence intensity of PKH26 labeling was gradually reduced with increase of the passage times. The PKH26 labeling disappeared after passage six times. In summary, PKH26 labeling is a safe and effective way to label live HUMSCs.  相似文献   

17.
Mirkes PE 《Teratology》2002,65(5):228-239
Cell death is a common and reproducible feature of the development of many mammalian tissues/organs. Two well-known examples of programmed cell death (PCD) are the cell deaths associated with fusion of the neural folds and removal of interdigital mesenchymal cells during digit formation. Like normal development, abnormal development is also associated with increased cell death in tissues/organs that develop abnormally after exposure to a wide variety of teratogens. At least in some instances, teratogens induce cell death in areas of normal PCD, suggesting that there is a link between programmed and teratogen-induced cell death. Although researchers recognized early on that cell death is an integral part of both normal and abnormal development, little was known about the mechanisms of cell death. In 1972, Kerr et al. ('72) showed conclusively that cell deaths, induced in a variety of contexts, followed a reproducible pattern, which they termed apoptosis. The next breakthrough came in the 1980s when Horvitz and his colleagues identified specific cell death genes (ced) that controlled PCD in the roundworm, Caenorhabditis elegans (C. elegans). Identification of ced genes in the roundworm quickly led to the isolation of their mammalian homologues. Subsequent research in the 1990s led to the identification of a cadre of proteins controlling cell death in mammals, i.e., receptors/ligands, caspases, cytochrome c, Apaf-1, Bcl-2 family proteins, and IAPs. Two major pathways of apoptosis have now been elucidated, the receptor-mediated and the mitochondrial apoptotic pathways. The latter pathway, induced by a wide variety of toxic agents, is activated by the release of cytochrome c from mitochondria. Cytochrome c then facilitates the activation of a caspase cascade involving caspase-9 and -3. Activation of these caspases results in the cleavage of a variety of cellular proteins leading to the orderly demise of the cell. Work from my laboratory in the last 5 years has shown that teratogens, such as hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine, induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway, i.e., mitochondrial release of cytochrome c, activation of caspase-9 and -3, inactivation of poly (ADP-ribose) polymerase (PARP), and systematic degradation of DNA. Our work, as well as the work of others, has also shown that different tissues within the early post implantation mammalian embryo are differentially sensitive to the cell death inducing potential of teratogens, from exquisite sensitivity of cells in the developing central nervous system to complete resistance of cells in the developing heart. More importantly, we have shown that the resistance of heart cells is directly related to the failure to activate the mitochondrial apoptotic pathway in these cells. Thus, whether a cell dies in response to a teratogen and therefore contributes to the pathogenesis culminating in birth defects, depends, at least in part, by the cell's ability to regulate the mitochondrial apoptotic pathway. Future research aimed at understanding this regulation should provide insight not only into the mechanism of teratogen-induced cell death but also the role of cell death in the genesis of birth defects.  相似文献   

18.
Objectives:  This study aimed to investigate molecular and cellular changes induced in human bone marrow mesenchymal stem cells (hMSCs) after treatment with microtubule-interacting agents and to estimate damage to the bone marrow microenvironment caused by chemotherapy.
Materials and methods:  Using an in vitro hMSC culture system and biochemical and morphological approaches, we studied the effect of nocodazole and taxol® on microtubule and nuclear envelope organization, tubulin and p53 synthesis, cell cycle progression and proliferation and death of hMSCs isolated from healthy donors.
Results and conclusions:  Both nocodazole and taxol reduced hMSC proliferation and induced changes in the microtubular network and nuclear envelope morphology and organization. However, they exhibited only a moderate effect on cell death and partial arrest of hMSCs at G2 but not at M phase of the cell cycle. Both agents induced expression of p53, exclusively localized in abnormally shaped nuclei, while taxol, but not nocodazole, increased synthesis of β-tubulin isoforms. Cell growth rates and microtubule and nuclear envelope organization gradually normalized after transfer, in drug-free medium. Our data indicate that microtubule-interacting drugs reversibly inhibit proliferation of hMSCs; additionally, their cytotoxic action and effect on microtubule and nuclear envelope organization are moderate and reversible. We conclude that alterations in human bone marrow cells of patients under taxol chemotherapy are transient and reversible.  相似文献   

19.
In obese adipose tissue, infiltrating macrophages release proinflammatory cytokines that trigger insulin resistance. An adipocyte-based platform from visceral fat would be useful to elucidate the pathology of adipose inflammation and to develop therapeutic drugs for insulin resistance. ADSCs (adipose tissue-derived mesenchymal stromal cells) expanded from subcutaneous fat are intensively studied as sources for regenerative medicine. However, the adipocyte culture system from visceral fat tissue has not been utilized yet. We aimed to establish the bioactive adipocyte platform using ADSCs from visceral fat pad. Stromal vascular fractions were processed from epididymal fat pads of Sprague-Dawley rats and three human omental fat pads, and the ADSCs were expanded using a low-serum culture method. The responses of ADSCs and ADSC-adipocytes (their adipogenic lineages) to pioglitazone, a therapeutic drug for diabesity, were evaluated by gene expression and ELISA. ADSCs (1×108) were expanded from 10 g of rat epididymal fat pads or human omental fat pads over five passages. Cell surface marker expressions revealed that visceral ADSCs were equivalent to mesenchymal stem cells. ADSC-adipocytes expanded in the low-serum culture system significantly showed higher expression of adipogenic markers [PPAR (peroxisome proliferator-activated receptor) γ, LPL (lipoprotein lipase) and FABP4 (fatty acid-binding protein 4)] and adipocytokines [adiponectin, resistin, leptin, PAI-1 (plasminogen-activator inhibitor 1) and IL (interleukin)-10] than those expanded in a high-serum culture system. Pioglitazone accelerated the adipogenic induction and increased adiponectin expression in human ADSCs by 57.9±5.8-fold (mean±S.E.M.) relative to control cells (P<0.001). Both in rat and human ADSC-adipocytes, TNF-α significantly induced proinflammatory cytokines [MCP-1 (monocyte chemoattractant protein-1) and IL-6] and suppressed adiponectin expression, while pioglitazone antagonized these effects. The present findings suggest that visceral ADSC-adipocytes expanded in low-serum culture would be useful for adiposcience and pharmacological evaluations.  相似文献   

20.
Huang JI  Beanes SR  Zhu M  Lorenz HP  Hedrick MH  Benhaim P 《Plastic and reconstructive surgery》2002,109(3):1033-41; discussion 1042-3
Human liposuction aspirates contain pluripotent adipose-derived mesodermal stem cells that have previously been shown to differentiate into various mesodermal cell types, including osteoblasts and chondrocytes. To develop an autologous research model of bone and cartilage tissue engineering, the authors sought to determine whether rat inguinal fat pads contain a similar population of osteochondrogenic precursor cells. It was hypothesized that the rat inguinal fat pad contains adipose-derived multipotential cells that resemble human adipose-derived mesodermal stem cells in their osteochondrogenic capacity. To test this, the authors assessed the ability of cells isolated from the rat inguinal fat pad to differentiate into osteoblasts and chondrocytes by a variety of lineage-specific histologic stains.Rat inguinal fat pads were isolated and processed from Sprague-Dawley rats into a fibroblast-like cell population. Cell cultures were placed in pro-osteogenic media containing dexamethasone, ascorbic acid, and beta-glycerol phosphate. Osteogenic differentiation was assessed at 2, 4, and 6 weeks. Alkaline phosphatase activity and von Kossa staining were performed to assess osteoblastic differentiation and the production of a calcified extracellular matrix. Cell cultures were also placed in prochondrogenic conditions and media supplemented with transforming growth factor-beta1, insulin, transferrin, and ascorbic acid. Chondrogenic differentiation was assessed at 2, 7, and 14 days by the presence of positive Alcian blue staining and type II collagen immunohistochemistry. Cells placed in osteogenic conditions changed in structure to a more cuboidal shape, formed bone nodules, stained positively for alkaline phosphatase activity, and secreted calcified extracellular matrix by 2 weeks. Cells placed in chondrogenic conditions formed cartilaginous nodules within 48 hours that stained positively for Alcian blue and type II collagen. The authors identified the rat inguinal fat pad as a source of osteochondrogenic precursors and developed a straightforward technique to isolate osteochondrogenic precursors from a small animal source. This relatively easily obtained source of osteochondrogenic cells from the rat may be useful for study of tissue engineering strategies and the basic science of stem cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号