首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.  相似文献   

2.
Human urokinase was immobilized on an ethylene vinyl acetate copolymer surface. Soluble urokinase showed its maximum activity at pH 8.5, while the immobilized enzyme was most active at pH 9.0. Apparently, the shift in optimal pH was due to the polyanionic nature of the carrier surface on which the enzyme was immobilized. Optimal temperatures of soluble urokinase and immobilized enzyme were identical, i.e., 37 degrees C. The stability of immobilized enzyme against thermal degradation was several times higher than that of the soluble enzyme. Its stability at higher temperatures is one of the main reasons for the clinical use of immobilized urokinase as an antithrombotic material.  相似文献   

3.
A lipoprotein lipase (LPL) was made water insoluble by immobilizing onto the surface of polyacrolein (PAA) microspheres with and without oligoglycines as spacer. The activity of the immobilized LPL was found to remain high toward a small ester substrate, p-nitrophenyl laurate (pNPL). The relative activity of the immobilized LPL without spacer decreased gradually with the decreasing surface concentration of the immobilized LPL on the PAA microsphere. On the contrary, the immobilized LPL with oligoglycine spacers gave an almost constant activity for the substrate hydrolysis within the surface concentration region studied and gave a much higher relative activity than that without any spacer. The Michaelis constant K(m) and the maximum reaction velocity V(m) were estimated for the free and the immobilized LPL. The apparent K(m) was larger for the immobilized LPL than for the free one, while V(m) was smaller for the immobilized LPL. The pH, thermal, and storage stabilities of the immobilized LPL were higher than those of the free one. The initial enzymatic activity of the immobilized LPL maintained almost unchanged without any leakage and inactivation of LPL when the batch enzyme reaction was performed repeatedly, indicating the excellent durability of the immobilized LPL.  相似文献   

4.
Calcium alginate–starch hybrid gel was employed as an enzyme carrier both for surface immobilization and entrapment of bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase retained 52% of the initial activity while surface immobilized and glutaraldehyde crosslinked enzyme showed 63% activity. A comparative stability of both forms of immobilized bitter gourd peroxidase was investigated against pH, temperature and chaotropic agent; like urea, heavy metals, water-miscible organic solvents, detergent and inhibitors. Entrapped peroxidase was significantly more stable as compared to surface immobilized form of enzyme. The pH and temperature-optima for both immobilized preparations were the same as for soluble bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase showed 75% of the initial activity while the surface immobilized and crosslinked bitter gourd peroxidase retained 69% of the original activity after its seventh repeated use.  相似文献   

5.
Water-insoluble proteases were prepared by immobilizing papain and chymotrypsin onto the surface of polyacrolein microspheres with and without oligoglycines as spacer. The activity of immobilized proteases was found to be still high toward small ester substrates, but very low toward casein, a high-molecular-weight substrate. The relative activity of the immobilized proteases without spacer decreased gradually with the decreasing surface concentration of the immobilized proteases on the microspheres. On the contrary, the immobilized proteases with oligoglycine spacers gave an almost constant activity for the substrate hydrolysis within the surface concentration region studied and gave a much higher relative activity than those without any spacer. With the longer spacer, the immobilized enzymes showed a higher activity toward casein hydrolysis, whereas there was an optimum length for the spacer when hydrolysis was carried out toward the low-molecular-weight substrate. The thermal stability of the immobilized proteases was higher than that of the respective native proteases. The initial enzymatic activity of the immobilized proteases maintained almost unchanged without any elimination and inactivation of proteases, when the batch enzyme reaction was performed repeatedly, indicating the excellent durability.  相似文献   

6.
Horseradish peroxidase is immobilized by a periodate method on the gold surfaces previously modified with 16-mercapto-hexadecanoic acid or with hydrogen disulfide and soybean trypsin inhibitor. The effect of gold surface modification conditions on the immobilization of the enzyme as well as on the properties of the immobilized glycoprotein are studied using surface plasmon resonance technique. Restoration of the ability to bind specific antibodies is demonstrated for the immobilized enzyme. The low level of non-specific antibody binding to the immobilized glycoprotein is also shown.  相似文献   

7.
Cha T  Guo A  Zhu XY 《Proteomics》2005,5(2):416-419
We compare the catalytic activities of enzymes immobilized on silicon surfaces with and without orientation. While oriented sulfotransferases selectively immobilized on an otherwise zero-background surface via 6xHis tags faithfully reflect activities of solution phase enzymes, those with random orientation on the surface do not. This finding demonstrates that controlling the orientation of immobilized protein molecules and designing an ideal local chemical environment on the solid surface are both essential if protein microarrays are to be used as quantitative tools in biomedical research.  相似文献   

8.
Vibrio cholerae neuraminidase was immobilized on the inside of 1.0 mm inner diameter nylon tubing with retention of enzyme activity, when assayed at 37 degrees C and pH 5.5 with mucin as substrate. The stabilities of the immobilized and soluble enzymes were similar for up to 3 hr at 37 degrees C. Preliminary data indicated that immobilized neuraminidase will release sialic acid from the surface of leukemic AKR mouse thymus and spleen lymphocytes; however, the level of immobilized enzyme activity needs to be increased for practical applications. With this improvement immobilized neuraminidase could become a novel preparation for carrying out cell surface modifications with minimal enzyme contamination of the cell.  相似文献   

9.
The work deals with immobilization of glucose oxidase on modified graphite. The effect of the carrier surface composition on the major properties of the immobilized enzyme was examined. The level of activity of the immobilized enzyme is shown to depend on the quantity of Ti and Zr oxides applied on the graphite surface. The high activity of the enzyme immobilized on graphite will enable it to be used for construction of enzyme electrodes.  相似文献   

10.
New dextran-agarose supports, suitable for covalent immobilization of enzymes and proteins acting on macromolecular substrates, were prepared. The thick internal fibers of agarose gels were covered by a low-density layer of long, flexible, hydrophilic, and inert dextran molecules. Rennin and protein A were immobilized on these novel supports and the resulting derivatives exhibited a very high capacity for biological recognition of soluble macromolecular substrates. Caseinolytic activity of this immobilized enzyme was 15-fold higher than activity of directly immobilized rennin, through short spacer arms, on agarose gels. Similarly, the new derivatives of immobilized protein A were able to adsorb up to 2 molecules of immunoglobulin per each molecule of immobilized protein A. When the immobilized proteins were secluded away from the support surface by using these new long and hydrophilic spacer arms, they exhibit minimal steric hindrances that could be promoted by the proximity of the support surface.  相似文献   

11.
A蛋白定向固定抗体用于椭偏光学生物传感器免疫检测   总被引:9,自引:0,他引:9  
椭偏光学生物传感器是在椭偏光学显微成像技术的基础上发展的一项生物传感技术。它能够直接观测固体表面上的生物分子面密度,毋需任何标记辅助,适合发展成为一种无标记免疫检测技术。研究了在硅片表面上通过A蛋白定向固定抗体分子用于椭偏光学生物传感器免疫检测的可能性。实验结果表明,通过A蛋白固定抗体得到的抗体膜层的均一性和固定量的重复性能够保证椭偏光学生物传感器免疫检测结果的质量。通过A蛋白定向固定的抗体的抗原结合位点趋向一致,显著提高了抗体与抗原结合的能力。此外,通过蛋白A固定的免疫球蛋白G分子能够结合更多的多克隆抗体分子说明通过A蛋白固定的蛋白质分子能够较好地保持其空间构象。  相似文献   

12.
以超临界二氧化碳(SCCO2)为分散介质在聚偏氟乙烯(PVDF)微孔膜表面和孔内进行马来酸酐和苯乙烯的接枝共聚,合成出超高分子量的苯乙烯/马来酸酐交替共聚物(SMA)基微孔PVDF膜。以SMA基PVDF膜为载体通过酸酐基和酶分子上的氨基偶联,制备出具有酶催活性的功能性分离膜。考察了影响酶固定化的因素,确定其最佳固定化条件为: 温度,4oC;pH,8.2; 酶/膜,1:10;反应时间,6h。固定化酶膜的最适温度为55oC,最适pH为7.8,均比自由酶稍高;Km(0.3mM/L)与自由酶接近。固定化酶膜活力达13.5 U/cm2 膜, 比活为280.0 U/mg 蛋白,蛋白载量为68.2 g/cm2 膜,相对活力为89.0%。固定化酶膜表现出良好的操作稳定性和储存稳定性,SMA基PVDF微孔酶膜超滤制备低乳糖牛奶实验表明该技术应用前景广阔。  相似文献   

13.
The use of spacers to distance an immobilized antibody from the surface of a support matrix introduces flexibility, which can reduce steric interferences between antibodies leading to a higher antigen capture efficiency. In this paper we investigated the use of a spacer molecule, poly-ethylene glycol (PEG), between the matrix surface and antibodies for the capture of Bacillus globigii, E. coli O157:H7, and ovalbumin. The antigen capture efficiency was determined using a surface ELISA method. Antibodies against the antigens were covalently immobilized either directly or via PEG to glass surfaces using a one-step EDC reaction. The amount of antibody immobilized was determined before blocking the nonspecific binding sites with bovine serum albumin. Antibodies immobilized via a PEG spacer showed a higher capture efficiency compared to direct immobilization, which was more pronounced with large antigens. Antibodies immobilized on glass supports were stable at 65 degrees C for at least 80 min, and the capture efficiency increased with heating at 65 degrees C for 20 min.  相似文献   

14.
In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.  相似文献   

15.
Utilization of 125I-labeled IgG enables an investigation of protein immobilized to gold electrodes sputter deposited on microporous nylon membranes, including the precise nature of the surface-protein bond (i.e. covalent or non-specific adsorption), physical location of the immobilized protein (i.e. on the surface of the gold electrode or within the pores of the membrane), and the amount of protein immobilized. This is accomplished by comparing the mass of protein immobilized to gold surfaces that have been treated in several different fashions, as well as, deposition of the gold on nylon membranes that have been treated differently. It is shown that these microporous gold electrodes, proposed previously for conducting novel non-separation electrochemical enzyme immunoassays, consist of multiple protein layers non-specifically adsorbed. Approximately, half of the total adsorbed protein is immobilized to the gold surface with the remaining protein bound within the pores on the nylon membrane.  相似文献   

16.
Immobilization of DNA to the surface of poly(ethylene terephthalate) (PET) microfibers with a high specific surface area of 0.83 m(2)/g was carried out to give the fiber surface an affinity for anti-DNA antibody. Following ozone oxidation, the microfibers were subjected to graft polymerization of monomers including acrylic acid, methacryloyloxyethyl phosphate, N,N-dimethylaminoethyl methacrylate, N-vinylformamide, and glycidyl methacrylate. Calf thymus DNA was immobilized to the grafted fiber surface through either covalent binding or polyion complexation with the grafted polymer chains. The highest surface density of DNA immobilized (0.6 mug/cm(2)) was obtained when DNA was immobilized through formation of phosphodiester linkage between the hydroxyl group of DNA and the phosphate group in grafted poly(methacryloyloxyethyl phosphate) using 1,1-carbonyldiimidazole, or through polyion complexation between the anionic DNA and the cationic grafted poly(N,N-dimethylaminoethyl methacrylate) chains. Batch adsorption of anti-DNA antibody to the grafted PET fibers with and without DNA immobilized on their surface was conducted with serum obtained from systemic lupus erythematosus model mice. The DNA-immobilized PET fibers exhibited a higher adsorption capacity and specificity than the others. In addition, the DNA-immobilized fibers effectively adsorbed human anti-DNA antibody.  相似文献   

17.
In order to examine the possibility of the use of a surface plasmon resonance (SPR) sensor for real-time monitoring of the process of refolding of immobilized proteins, the refolding of firefly luciferase immobilized on a carboxymethyldextran matrix layer was analyzed. The SPR signal of the immobilized luciferase decreased after unfolding induced by GdnCl and increased gradually in the refolding buffer, while there was no signal change in the reference surface lacking the immobilized protein. The decrease in the SPR signal on unfolding was consistent with the difference between the refractive indices of the native and unfolded protein solutions. The effects of blocking of the excess NHS-groups of the matrix layer on the refolding yield were examined by means of an SPR sensor. The results were consistent with those obtained with the enzymatic activity assay, indicating that the changes in the SPR signal reflected the real-time conformational changes of the immobilized protein. Hence, an SPR biosensor might be used for monitoring of the process of refolding of immobilized proteins and as a novel tool for optimization of the refolding conditions. This is the first demonstration that SPR signal changes reflect the conformational changes of an immobilized protein upon unfolding and refolding.  相似文献   

18.
The present work investigates the influence of the support surface on the loading and the enzymatic activity of the immobilized Pseudomonas fluorescens lipase. Different porous materials, polypropylene (Accurel), polymethacrylate (Sepabeads EC-EP), silica (SBA-15 and surface modified SBA-15), and an organosilicate (MSE), were used as supports. The immobilized biocatalysts were compared towards sunflower oil ethanolysis for the sustainable production of biodiesel. Since the supports have very different structural (ordered hexagonal and disordered) and textural features (surface area, pore size, and total pore volume), in order to consider only the effect of the support surface, experiments were performed at low surface coverage. The different functional groups occurring on the support surface allowed either physical (Accurel, MSE, and SBA-15) or chemical adsorption (Sepabeads EC-EP and SBA-15–R-CHO). The surface-modified SBA-15 (SBA-15–R-CHO) allowed the highest loading. The lipase immobilized on the MSE was the most active biocatalyst. However, in terms of catalytic efficiency (activity/loading) the lipase immobilized on the SBA-15, the support that allowed the lowest loading, was the most efficient.  相似文献   

19.
In this study, a biphasic enzymatic membrane reactor was made by immobilizing Candida Rugosa lipase onto the dense surface of polysulfone ultrafiltration membrane by filtration and then cross-linking with glutaraldehyde solution. The reactor was further applied for the hydrolysis of olive oil, the performance of which was evaluated in respect of apparent reaction rate based on the amount of fatty acids extracted into the aqueous phase per minute and per membrane surface. It was found that the ultrafiltration and cross-linking process greatly improved the reaction rate per unit membrane area and the enzyme lifetime. The highest reaction rate reached 0.089 micromol FFA/min cm2 when the enzyme loading density was 0.098 mg/cm2. The results also indicated that the performance of lipase immobilized on the membrane surface was superior to that immobilized in the pores, and the apparent reaction rate and stability of immobilized lipases were improved greatly after cross-linking. It suggested that immobilization of enzymes by filtration and then cross-linking the enzymes onto the membrane surface is a simple and convenient way to prepare a high-activity immobilized enzyme membrane.  相似文献   

20.
A streptavidin-biotin system was utilized to prepare an antibody-polyadenylic acid conjugate which was subsequently attached to commercially available magnetic beads, Dynabeads oligo(dT)25. Biotinylated polyadenylic acid was combined with streptavidin and the resulting polyadenylic acid-streptavidin was conjugated with an antibody-biotin derivative. The immobilized antibody-polyadenylic acid conjugate was separated from the reaction mixture by hybridization with complementary oligonucleotide immobilized on the surface of Dynabeads oligo(dT)25. The immobilized antibody-polyadenylic acid can be released from the carrier, utilizing low-ionic-strength buffers. The system is intended to be utilized in cell sorting, using immobilized antibodies against cell surface antigens. Dissociation of antibody-containing conjugate from magnetic beads is essential for the isolation of viable cells via positive cell sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号