首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oleaceae pollen concentrations in the Trieste area are low (<10%) compared to the total number of airborne pollen grains, with only one pollination peak at the beginning of June when the Oleaceae concentration reached 62% of the total pollen count in 1992. This peak was due to an exceptionally high pollination of olive trees in 1992, when airborne pollen concentration rose to 1357 pollen grains/m3 on June 3. Sensitization toOlea increased from 1989 to 1993, when it was present in 23.4% of symptomatic patients, but the role ofOlea in inducing allergic respiratory symptoms is difficult to evaluate because almost all patients were sensitized to other pollens, and in particular to Gramineae: only four subjects were sensitized toOlea alone (1.4%). Despite the low Oleaceae pollen counts, this pollinosis is increasing, probably because of increased cultivation ofOlea in recent years. However, although skin prick test positivity is common in polysensitized patients, its role in inducing sensitization and symptoms is presently less important than that of other pollens.  相似文献   

2.
Alder pollen seasons and the effect of meteorological conditions on daily average pollen counts in the air of Lublin (Poland) were analysed. Alnus pollen grains reach very high concentrations in the atmosphere of this city during the early spring period and the parameters of pollen seasons were very different in the particular years studied. The pollen season lasted on average one month. The highest variation was observed for the peak value and the Seasonal Pollen Index (SPI). The pollen seasons, which started later, had shorter duration. Peak daily average pollen counts and SPI value were higher during the shorter seasons. Similarities in the stages of pollen seasons designated by the percentage method depended on the start date of the pollen season. Season parameters were mainly correlated with thermal conditions at the beginning of the year. Regression analysis was used to predict certain characteristics of the alder pollen season. The highest level of explanation of the variation in Alnus pollen season start and peak dates was obtained in the model using mean temperature in February. The obtained regression models may predict 82% of the variation in the pollen season start date, 73% of the variation in the duration, and 62% in the peak date.  相似文献   

3.
In order to study allergic people responding to daily changes in pollen concentrations, we compared personal diary data on allergic symptoms and the use of allergy medicines to daily pollen counts during the two unequal alder and birch pollen seasons of 2009 and 2010. Almost 90% of the 61 subjects with physician-diagnosed birch pollinosis developed conjunctival, nasal or other symptoms during the peak birch pollination. Most subjects (95%) also reported symptoms during the alder pollination. Despite a delay between the most severe symptoms and the pollen peaks and the increased risk of allergy symptoms between the alder and birch pollen peaks at much lower pollen concentrations, the number of subjects with allergy symptoms correlated with the daily pollen concentrations in both years (r 09 = 0.35, r 10 = 0.36, p < 0.01). The positive correlation was even stronger (r 09 = 0.69, r 10 = 0.74, p < 0.001) in relation to the cumulative sum of daily concentrations. The use of allergy medicines precisely followed the abundance of allergy symptoms in both years (r 09 = 0.96, r 10 = 0.70, p < 0.001). We conclude that there is a fair correlation between the daily allergy symptoms and the particular pollen concentrations, but the risk of developing symptoms at low, moderate and high concentrations is affected by the progression of the pollen season.  相似文献   

4.
Jane Norris-Hill 《Aerobiologia》1998,14(2-3):165-170
This paper attempts the prediction of the start of theBetula, Quercus andPlatanus pollen seasons in London, UK based on pollen sampling conducted over a 5-year period, 1987–1991. The times at which eight different thresholds of accumulated daily pollen counts (M−3) were passed were correlated against heat sums, chill units, accumulated sunshine hours, monthly meteorological parameters and the start dates of earlier pollen seasons to identify significant associations. Few meteorological parameters were significantly correlated with the start dates of the three pollen seasons, the exceptions being significant negative correlations between the average monthly air temperature in the months immediately preceding theBetula andPlatanus pollen season. However, significant relationships were identified between the start dates of theBetula, Quercus andPlatanus pollen seasons and the start of theCorylus, Taxus andPopulus pollen seasons with coefficients of determination as high as 98%. These indicator species were then used as predictors to forecast the start of theBetula, Quercus andPlatanus pollen seasons, both individually and in combination with one another, providing levels of explanation of up to 99%.  相似文献   

5.
Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.  相似文献   

6.
The aim of the present paper is to study the influence of air temperature on the start of Quercus pollination in Córdoba (Andalusia, Spain). Sixteen years of pollen counts were used. The start date of the pollen season in this period varied between 26th February and 7th April. Chilling requirements and heat accumulation were taken into account although no significant correlation between chilling hours and the start date was observed. Five different predictive methods based on heat accumulation were compared in this paper: 1) Number of days over a threshold; 2) Heat Units (accumulated daily mean temperature after deducting a base temperature); 3) Growing Degrees Days (Snyder 1988), as a measure of physiological growing time; 4) Accumulated maximum temperatures; and 5) Mean maximum temperature. Results indicated that the optimum base temperature for heat accumulation was 11 Co. This threshold was used in the first three methods mentioned above. Good statistical results were obtained with the five methods, yielding high levels of explanation (p~99%). Nevertheless, the most accurate method appeared to be the Growing Degree Days (GDDo) method, which indicated that a mean of 127.3 GDDo must be accumulated from the end of the chilling period up to the beginning of the Quercus pollen season in Córdoba (South West Spain). Results were tested for predicting start dates in 1999 and 2000. The predicted dates were only one day after the actual dates.  相似文献   

7.
The pollen of anemogamous plants is responsible for half the allergic diseases, that is to say a prevalence of 10% in the French population. Poaceæ produce the first allergenic pollen almost everywhere. The work described in this article aimed to validate forecast methods for the use of physicians and allergic people who need accurate and early information on the first appearance of pollen in the air. The methods were based on meteorological parameters, mainly temperature. Four volumetric Hirst traps were used from 1995 to 1998, situated in two departments of Burgundy. Two of the methods tested proved to be of particular interest: the sum of the temperatures and the sum of Q 10 values, an agrometeorological coefficient integrating temperature. A multiple regression, using maximum temperature and rainfall, was also performed but it gave slightly less accurate results. A χ 2-test was then used to compare the accuracy of the three methods. It was found that the date of onset of the pollen season could be predicted early enough to be useful in medical practice. Results were verified in 1999, and the research must be continued to obtain better statistical validity.  相似文献   

8.
About 30% of the Hungarian population has some type of allergy, 65% of them have pollen sensitivity, and at least 60% of this pollen sensitivity is caused by ragweed. The short (or common) ragweed (Ambrosia artemisiifolia = Ambrosia elatior) has the most aggressive pollen of all. Clinical investigations prove that its allergenic pollen is the main reason for the most massive, most serious and most long-lasting pollinosis. The air in the Carpathian Basin is the most polluted with ragweed pollen in Europe. The aim of the study is to analyse how ragweed pollen concentration is influenced by meteorological elements in a medium-sized city, Szeged, Southern Hungary. The data basis consists of daily ragweed pollen counts and averages of 11 meteorological parameters for the 5-year daily data set, between 1997 and 2001. The study considers some of the ragweed pollen characteristics for Szeged. Application of the Makra test indicates the same period for the highest pollen concentration as that established by the main pollination period. After performing factor analysis for the daily ragweed pollen counts and the 11 meteorological variables examined, four factors were retained that explain 84.4% of the total variance of the original 12 variables. Assessment of the daily pollen number was performed by multiple regression analysis and results based on deseasonalised and original data were compared.  相似文献   

9.
This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009–2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman’s rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.  相似文献   

10.
Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.  相似文献   

11.
This study sought to compare airborne pollen counts for a number of common herbaceous species (Plantago, Chenopodiaceae–Amaranthaceae, Rumex, and Urticaceae) in two cities with differing weather conditions, Córdoba (Southwestern Spain) and Poznan (Western Poland). Pollen seasons for these species were studied from 1995 to 2005. Aerobiological sampling was performed using a Hirst type 7-day spore trap, in accordance with the procedure developed by the European Aerobiology Network. A Spearman correlation test was used to test for correlations between meteorological parameters and daily airborne pollen counts. The Spearman correlation test and the Wilcoxon signed ranks test were also used to compare mean daily pollen counts for the two study sites. In Córdoba, the pollen season generally started around two months earlier than in Poznan, and also lasted longer. These findings were attributed to the presence of a larger number of species in Córdoba, with overlapping pollen seasons, and also to more favorable weather conditions. Trends in pollen season start dates were fairly stable over the study period, with a slight tendency to delayed onset in Córdoba and a modest advance in start date in Poznan. The pollen season end date also remained reasonably stable over the study, with only a slight tendency for the season to end earlier in Córdoba and later in Poznan. A clear trend towards declining annual pollen counts was recorded over the study period for all pollen types in both cities.  相似文献   

12.
The presence of airborne Cyperaceae and Juncaceae pollen was quantified using volumetric aerobiological traps over a 10-year period at two sites in SW Spain separated by 60 km (Badajoz 10 years, Mérida 3 years). The Pearson correlation coefficient was calculated between the daily and hourly concentrations. The values of the principal meteorological parameters—temperature, rainfall, relative humidity, and speed and direction of the wind—were calculated during the study period, and with the accumulated values corresponding to the period prior to pollination. The beginning and ending dates and the duration of the main pollen season (MPS) were also analyzed. Even though both families are anemophilous, the presence of their pollens in the air was low. The annual accumulated daily concentrations were in the range 1.8–15.8 for Juncaceae and 111.8–473.9 for Cyperaceae—values far lower than any other anemophilous pollen type. The Cyperaceae pollen concentration peaked between 09:00 and 12:00. The meteorological factor most closely related to its daily variations was found to be the wind direction, showing that location of the sources is of great importance. The results lend support to the hypothesis of a limitation of allogamous reproduction in favour of vegetative multiplication in both families. Nevertheless, the principal source of the airborne Cyperaceae pollen was found to be Scirpus holoschoenus, whose pollen is distinguishable from the rest. Hence, because of its large production of pollen, this species can be characterized as anemophilous and allogamous. Rainfall in the preceding autumn seemed to be responsible for the amount of Cyperaceae pollen in the air, since a lack of rain was found to be associated with lower densities in the traps. For the Juncaceae, it seems that the temperatures of the preceding December constituted the most limiting meteorological parameter.  相似文献   

13.
In this work we have studied the influence of air temperature on the starting dates of Alnus and Populus pollination in two different climatic regions in Europe: central Italy and The Netherlands. The start of the Alnus pollen season varied between 27th January and 16th February in the Italian stations while in The Netherlands it showed an average delay of about one month. For Populus the beginning of the pollen season was delayed on an average 15 days at Dutch places compared to central Italy. In the former it varied between 14th March and 21st April while in the latter between 28th February and 24th March. Significant correlations exist between the beginning of pollination for these taxa and temperature conditions in the preceding periods. The highest correlations found were with daily mean decade temperature for three decades before the average starting dates of the pollen season. These correlations were better for The Netherlands than for central Italy perhaps because the temperature in Holland is the more prominent meteorological factor (relative to precipitation) compared with central Italy, where precipitation has much influence in winter. This study indicated correlations between the pollination and temperature also during the dormant period in the preceding season.  相似文献   

14.
We studied the possibility of integrating flowering dates in phenology and pollen counts in aerobiology in Germany. Data were analyzed for three pollen types (Betula, Poaceae, Artemisia) at 51 stations with pollen traps, and corresponding phenological flowering dates for 400 adjacent stations (< 25 km) for the years 1992–1993 and 1997–1999. The spatial and temporal coherence of these data sets was investigated by comparing start and peak of the pollen season with local minima and means of plant flowering. Our study revealed that start of birch pollen season occurred on average 5.7 days earlier than local birch flowering. For mugwort and grass, the pollen season started on average after local flowering was observed; mugwort pollen was found 4.8 days later and grass pollen season started almost on the same day (0.6 days later) as local flowering. Whereas the peak of the birch pollen season coincided with the mean flowering dates (0.4 days later), the pollen peaks of the other two species took place much later. On average, the peak of mugwort pollen occurred 15.4 days later than mean local flowering, the peak of grass pollen catches followed 22.6 days after local flowering. The study revealed a great temporal divergence between pollen and flowering dates with an irregular spatial pattern across Germany. Not all pollen catches could be explained by local vegetation flowering. Possible reasons include long-distance transport, pollen contributions of other than phenologically observed species and methodological constraints. The results suggest that further research is needed before using flowering dates in phenology to extrapolate pollen counts.  相似文献   

15.
Exposure to allergens represents a key factor among the environmental determinants of asthma. The most common information available for pollinosis patients is the concentration of pollen grains in the bioaerosol and their temporal distribution. However, in recent years, discordance between pollen concentrations and allergic symptoms has been detected. The purpose of this research is to evaluate the relationship between pollen counts and the atmospheric aeroallergen concentrations in different Spanish bioclimatic areas. For the monitoring of allergen content in the air, a quantitative antigen–antibody technique combined with the Cyclone sampling methodology was used. The study was conducted during 2007 by considering some of the most common allergens that induce pollinosis in each area: Platanus and Urticaceae in Ourense and Cartagena, and Poaceae in Ourense and León. In Ourense, pollen counts and aeroallergen concentrations coincided for the three pollen types studied, and the pollen and allergen data associated with the meteorological factors were highly significant for the pollen counts. In Cartagena (for Platanus and Urticaceae) and León (for Poaceae), the low correlations between pollen counts and allergen concentrations obtained could be due to the specific bioclimatic conditions. In contrast, the higher allergen concentrations found in the atmosphere in Cartagena and León compared to Ourense could be related to the existing pollutant levels there, inducing a higher expression of plant pathogenesis-related proteins in the plants of polluted cities. The combination of pollen counts and allergen quantification must be assessed to reliably estimate exposure of allergic people to allergens in different bioclimatic areas.  相似文献   

16.
For calculating the total annual Olea pollen concentration, the onset of the main pollen season and the peak pollen concentration dates, using data from 1998 to 2004, predictive models were developed using multiple regression analysis. Four Portuguese regions were studied: Reguengos de Monsaraz, Valença do Douro, Braga and Elvas. The effect of some meteorological parameters such as temperature and precipitation on Olea spatial and temporal airborne pollen distribution was studied. The best correlations were found when only the pre‐peak period was used, with thermal parameters (maximum temperature) showing the highest correlation with airborne pollen distribution. Independent variables, selected by regression analysis for the predictive models, with the greatest influence on the Olea main pollen season features were accumulated number of days with rain and rainfall in the previous autumn, and temperatures (average and minimum) from January through March. The models predict 59 to 99% of the total airborne pollen concentration recorded and the initial and peak concentration dates of the main Olea pollen season.  相似文献   

17.
Aerobiological study of Fagaceae pollen in the middle-west of Spain   总被引:1,自引:0,他引:1  
The concentration of airborne Fagaceae pollen in Salamanca and the correlations with some meteorological parameters have been examined. Castanea and Quercus pollen grains were collected from 1998 to 2004 using a Burkard spore trap. No pollen grains of Fagus were found. The main pollen season took place in April and May for Quercus and in June and July for Castanea. Yearly variations on these dates could be related to the influence of meteorological factors such as rainfall, temperature, or dominant winds. The highest values appeared in the year 2004 for both taxa. The Fagaceae airborne content was mainly due to Quercus pollen, Castanea having a scarce pollen content in the city of Salamanca. The highest counts of Fagaceae pollen grains were found from mid May to early June due to the pollen behavior of oaks. The cumulative counts varied over the years, with a mean value of 2,384 pollen grains, a highest total of 6,036 in 2004 and a lowest total of 954 in 2001. No cyclic variations were observed. Daily pollen concentrations presented positive correlation with temperature, negative with relative humidity and slightly negative with rainfall using Spearman's correlation coefficients, only in the case of Castanea, because the particular hourly distribution of rainfall during the spring might affect Quercus airborne pollen.  相似文献   

18.
齐晨  姜江  叶彩华  尤焕苓  乔媛  沙祎  白帆 《生态学报》2023,43(7):2650-2662
花粉是我国北方引发过敏性鼻炎最主要过敏原,花粉症发病期与花粉浓度高峰期吻合。基于北京地区2012至2020年花粉季多站、逐日分类花粉浓度观测数据分析,得出北京地区花粉浓度在3月上旬至5月中旬(可进一步划分为3月中旬至4月上旬和4月下旬至5月上旬两个高峰期)和8月中旬至9月中旬分别存在两个高峰期,第一个高峰期内优势致敏花粉种类为柏科、杨柳科和松科,第二个高峰期内优势致敏花粉种类为桑科、菊科蒿属和藜科。根据优势致敏花粉年浓度峰值日期观测数据,使用与花粉采样站点位置相匹配的逐日气象观测数据累积值,基于作物模型概念和模糊逻辑原理建立了北京地区主要气传致敏花粉年浓度峰值日期预测模型。经检验,柏科、杨柳科、松科、桑科、菊科蒿属和藜科花粉模型预测准确率分别为87.8%、80.0%、64.4%、86.7%、78.8%和81.8%。基于北京地区主要气传致敏花粉年浓度峰值日期预测模型可为本地花粉症防治提供理论参考。  相似文献   

19.
This study focuses on the identification and quantification of airborne pollen grains from allergenic plant species and their relationship with meteorological factors, i.e. maximum and minimum daily temperature, relative humidity, rainfall and wind speed in the city of Islamabad, Pakistan. An aerobiological data set (2010–2012), collected using rotorod samplers in five different sectors of the city, was supplied by the Pakistan Meteorological Department. Pollen of eight allergenic species was identified amongst which Broussonetia papyrifera exceeded the highest pollen level and, therefore, likely played a key role in aggravating the symptoms of pollen allergy in the city. The mean weekly pollen counts were next correlated with the weekly number of allergic patients visiting hospitals during 2010–2011. Clinical data were acquired from the Pakistan Institute of Medical Sciences. The highest number of allergic patients visiting hospital was usually observed during weeks with high pollen level. These results suggest a close relationship between the pollen concentration in the air and the allergy symptoms. Spearman’s rank correlation analysis was performed to establish the relationships between meteorological parameters and daily average pollen counts. A pollen calendar for the Islamabad city was also prepared to provide a guide for the timing and duration of season for all encountered pollen types.  相似文献   

20.
Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994–2000 and 2001–2011 showed that birch and oak trees were observed to flower 1–2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %–248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号