首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

2.
Fluorescently labeled myosin heads (S1) were added to muscle fibers and myofibrils at various concentrations. The orientation of the absorption dipole of the dye with respect to the axis of F-actin was calculated from polarization of fluorescence which was measured by a novel method from video images of muscle. In this method light emitted from muscle was split by a birefringent crystal into two nonoverlapping images: the first image was created with light polarized in the direction parallel to muscle axis, and the second image was created with light polarized in the direction perpendicular to muscle axis. Images were recorded by high-sensitivity video camera and polarization was calculated from the relative intensity of both images. The method allows measurement of the fluorescence polarization from single myofibril irrigated with low concentrations of S1 labeled with dye. Orientation was also measured by fluorescence-detected linear dichroism. The orientation was different when muscle was irrigated with high concentration of S1 (molar ratio S1:actin in the I bands equal to 1) then when it was irrigated with low concentration of S1 (molar ratio S1:actin in the I bands equal to 0.32). The results support our earlier proposal that S1 could form two different rigor complexes with F-actin depending on the molar ratio of S1:actin.  相似文献   

3.
15N- and 2H-substituted maleimido-TEMPO spin label ([15N,2H]MTSL) and the fluorescent label 1,5-IAEDANS were used to specifically modify sulfhydryl 1 of myosin to study the orientation of myosin cross-bridges in skeletal muscle fibers. The electron paramagnetic resonance (EPR) spectrum from muscle fibers decorated with labeled myosin subfragment 1 ([15N,2H]MTSL-S1) or the fluorescence polarization spectrum from fibers directly labeled with 1,5-IAEDANS was measured from fibers in various physiological conditions. The EPR spectra from fibers with the fiber axis oriented at 90 degrees to the Zeeman field show a clear spectral shift from the rigor spectrum when the myosin cross-bridge binds MgADP. This shift is attributable to a change in the torsion angle of the spin probe from cross-bridge rotation and is observable due mainly to the improved angular resolution of the substituted probe. The EPR data from [15N,2H]MTSL-S1 decorating fibers are combined with the fluorescence polarization data from the 1,5-IAEDANS-labeled fibers to map the global angular transition of the labeled cross-bridges due to nucleotide binding by an analytical method described in the accompanying paper [Burghardt, T. P., & Ajtai, K. (1992) Biochemistry (preceding paper in this issue)]. We find that the spin and fluorescent probes are quantitatively consistent in the finding that the actin-bound cross-bridge rotates through a large angle upon binding MgADP. We also find that, if the shape of the cross-bridge is described as an ellipsoid with two equivalent minor axes, then cross-bridge rotation takes place mainly about an axis parallel to the major axis of the ellipsoid. This type of rotation may imitate the rotation motion of cross-bridges during force generation.  相似文献   

4.
K Ajtai  T P Burghardt 《Biochemistry》1989,28(5):2204-2210
We describe a protocol for the selective covalent labeling of the sulfhydryl 2 (SH2) on the myosin cross-bridge in glycerinated muscle fibers using the sulfhydryl-selective label 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3-diazole (IANBD). The protocol promotes the specificity of IANBD by using the ability to protect sulfhydryl 1 (SH1) from modification by binding the cross-bridge to the actin filament and using cross-bridge-bound MgADP to promote the accessibility of SH2. We determined the specificity of the probe using fluorescence gel scanning of fiber-extracted proteins to isolate the probe on myosin subfragment 1 (S1), limited proteolysis of the purified S1 to isolate the probe on the 20-kilodalton fragment of S1, and titration of the free SH1's on purified S1 using the radiolabeled SH1-specific reagent [14C]iodoacetamide or enzymatic activity measurements. We estimated the distribution of the IANBD on the fiber proteins to be approximately 77% on SH2, approximately 5% on SH1, and approximately 18% on troponin I. We characterized the angular distribution of the IANBD on cross-bridges in fibers when the fibers are in rigor, in relaxation, in the presence of MgADP, and in isometric contraction using wavelength-dependent fluorescence polarization [Ajtai, K., & Burghardt, T. P. (1987) Biochemistry 26, 4517-4523]. With wavelength-dependent fluorescence polarization we use the ability to rotate the transition dipole in the molecular frame using excitation wavelength variation to investigate the three angular degrees of freedom of the cross-bridge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Differential binding of contractile proteins from skeletal muscle to Cibacron Blue F3GA-Sepharose affinity columns provides the basis for a new purification technique. Myosin subfragments bind at low ionic strength and are eluted by high salt (e.g., 1.5 m NaCl). Myosin light chain 2 also binds at low ionic strength, whereas light chain 1 is only partially retarded and light chain 3 does not bind. Myosin's marginal solubility in the low-salt buffers required for binding renders it unsuitable for Blue Sepharose chromatography. Neither G-actin nor F-actin bind. Crude preparations of myosin subfragment-1 or light chains undergo significant purification upon Blue Sepharose chromatography. Nee free chromophore inhibits the ATPase activities of myosin and actomyosin at micromolar dye concentrations, whereas the binding of subfragment-1 to actin (in myofibrils) and the tension of glycerinated fibers are inhibited at millimolar dye concentrations. The dye binds at multiple sites on myosin, and inhibits its actomyosin ATPase both competitively and uncompetitively.  相似文献   

6.
Myosin subfragment 1 (S1) can be specifically modified at Lys-553 with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) (Bertrand, R., J. Derancourt, and R. Kassab. 1995. Biochemistry. 34:9500-9507), and solvent quenching of FHS-S1 with iodide has been shown to be sensitive to actin binding at low ionic strength (MacLean, Chrin, and Berger, 2000. Biophys. J. 000-000). In order to extend these results and examine the fraction of actin-bound myosin heads within the myofilament lattice during calcium activation, we have modified skeletal muscle myofibrils, mildly cross-linked with EDC (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide) to prevent shortening, with FHS. The myosin heavy chain appears to be the predominant site of labeling, and the iodide quenching patterns are consistent with those obtained for myosin S1 in solution, suggesting that Lys-553 is indeed the primary site of FHS incorporation in skeletal muscle myofibrils. The iodide quenching results from calcium-activated FHS-myofibrils indicate that during isometric contraction 29% of the myosin heads are strongly bound to actin within the myofilament lattice at low ionic strength. These results suggest that myosin can be specifically modified with FHS in more complex and physiologically relevant preparations, allowing the real time examination of cross-bridge interactions with actin in in vitro motility assays and during isometric and isotonic contractions within single muscle fibers.  相似文献   

7.
Myosin cross-bridge subfragment 1 (S1) is the ATP catalyzing motor protein in muscle. It consists of three domains that catalyze ATP and bind actin (catalytic), conduct energy transduction (converter), and transport the load (lever arm). Force development during contraction is thought to result from rotary lever arm movement with the cross-bridge attached to actin. To elucidate cross-bridge structure during force development, two crystal structures of S1 were extrapolated to working "in solution" or oriented "in tissue" forms, using structure-sensitive optical spectroscopic signals from two extrinsic probes. The probes were located at two interfaces containing the catalytic, converter, and lever arm domains of S1. Observed signals included circular dichroism (CD) and absorption originating from S1 in solution in the presence and absence of actin and fluorescence polarization from cross-bridges in muscle fibers. Theoretical signals were calculated from S1 crystal structure models perturbed with lever arm movement from swiveling at three conserved glycines, 699, 703, and 710 (chicken skeletal myosin numbering). Best agreement between the computed and observed signals gave structures showing that actin binding to S1 causes movement of the lever arm. A three-state model of S1 conformation during contraction consists of three actin-bound cross-bridge states observed from muscle fibers in isometric contraction, in the presence of MgADP, and in rigor. Structures best representing these states show that most of the lever arm rotation occurs between isometric contraction and the MgADP states, i.e., during phosphate release. Smaller but significant lever arm rotation occurs with ADP dissociation. Structural changes within the S1 interfaces studied are discussed in the accompanying paper [Burghardt et al. (2001) Biochemistry 40, 4834-4843].  相似文献   

8.
Two missense mutations of the flight muscle-specific actin gene of Drosophila melanogaster, Act88F, assemble into normally structured myofibrils but affect the flight ability of flies and the mechanical kinetics of isolated muscle fibers. We describe the isolation of actin from different homozygous Act88F strains, including wild-type, an Act88F null mutant (KM88), and two Act88F single point mutations (E316K and G368E), their biochemical interactions with rabbit myosin subfragment 1 (S1), and behavior with rabbit myosin and heavy meromyosin in in vitro motility assays. The rabbit and wild-type Drosophila actins have different association rate constants with S1 (2.64 and 1.77 microM-1 s-1, respectively) and in vitro motilities (2.51, 1.60 microns s-1) clearly demonstrating an isoform-specific difference. The G368E mutation shows a reduced affinity for rabbit S1 compared with the wild type (increasing from 0.11 to 0.17 microM) and a reduced velocity in vitro (reduced by 19%). The E316K mutant actin has no change in affinity for myosin S1 or in vitro motility with heavy meromyosin but does have a reduced in vitro motility (15%) with myosin. These results are discussed with respect to the recently published atomic models for the actomyosin structure and our findings that G368E fibers show a reduced rate constant for delayed tension development and increased fiber stiffness. We interpret these results as possibly caused either by effects on A1 myosin light chain binding or conformational changes within the subdomain 1 of actin, which contains the myosin binding site. E316K is discussed with respect to its likely position within the tropomyosin binding site of actin.  相似文献   

9.
At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).  相似文献   

10.
To study the orientation and dynamics of myosin, we measured fluorescence polarization of single molecules and ensembles of myosin decorating actin filaments. Engineered chicken gizzard regulatory light chain (RLC), labeled with bisiodoacetamidorhodamine at cysteine residues 100 and 108 or 104 and 115, was exchanged for endogenous RLC in rabbit skeletal muscle HMM or S1. AEDANS-labeled actin, fully decorated with labeled myosin fragment or a ratio of approximately 1:1000 labeled:unlabeled myosin fragment, was adhered to a quartz slide. Eight polarized fluorescence intensities were combined with the actin orientation from the AEDANS fluorescence to determine the axial angle (relative to actin), the azimuthal angle (around actin), and RLC mobility on the <10 ms timescale. Order parameters of the orientation distributions from heavily labeled filaments agree well with comparable measurements in muscle fibers, verifying the technique. Experiments with HMM provide sufficient angular resolution to detect two orientations corresponding to the two heads in rigor. Experiments with S1 show a single orientation intermediate to the two seen for HMM. The angles measured for HMM are consistent with heads bound on adjacent actin monomers of a filament, under strain, similar to predictions based on ensemble measurements made on muscle fibers with electron microscopy and spectroscopic experiments.  相似文献   

11.
The labeling of muscle fiber proteins with iodoacetamido)tetramethylrhodamine (IATR) was reinvestigated with the purified 5' or 6' isomers of IATR. Both isomers modify the myosin heavy chain within the 20-kDa fragment of myosin subfragment 1 (S1) but with different rates, and only the 5'-IATR alters K(+)-EDTA- and Ca(2+)-activated ATPases. Absorption spectroscopic and ATPase studies of probe stoichiometry indicate that for 5'-IATR there are two probes per myosin sulfhydryl 1 (SH1). Quantitative fluorograms of the SDS-PAGE gels confirm that there are one covalent and one noncovalent probe per SH1 when S1 is labeled with 5'-IATR (5'-IATR-S1) and that there are one covalent and two noncovalent probes per S1 when S1 is labeled with 6'-IATR (6'-IATR-S1). The 5'- and 6'-IATR probes have similar fluorescent lifetimes when bound to S1, but quenching studies with potassium iodide show that 5'-IATR-S1 has a single class of strongly bound chromophores while 6'-IATR-S1 has two or more classes of chromophores. It is possible that 5'-IATR labels SH1 as a dimer. The polarization anisotropies of 5'- and 6'-IATR-S1 indicate that 5'-IATR is immobilized, while 6'-IATR is moving independently, on the surface of S1. The emission spectrum from 5'-IATR-S1 is unaffected by the addition of MgATP, while 6'-IATR-S1 shows a spectral shift and total intensity change. When labeling muscle fibers, 5'-IATR labels myosin SH1 and differentiates between the fiber physiological states by indicating cross-bridge rotation in quantitative agreement with previous results [Burghardt et al. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 7515]. 6'-IATR reacts preferentially with actin in muscle fibers and does not differentiate between fiber physiological states as expected for an actin probe. The stereospecificity of the rhodamine isomers for SH1 indicates features of the local protein structure. The experimental results are used with theoretical methods for determining molecular structure to suggest a qualitative scheme for the specific interaction of 5'-IATR with its binding pocket on the surface of S1.  相似文献   

12.
Numerous studies have explored the energetic properties of skeletal and cardiac muscle fibers. In this mini-review, we specifically explore the interactions between actin and myosin during cross-bridge cycling and provide a conceptual framework for the chemomechanical transduction that drives muscle fiber energetic demands. Because the myosin heavy chain (MHC) is the site of ATP hydrolysis and actin binding, we focus on the mechanical and energetic properties of different MHC isoforms. Based on the conceptual framework that is provided, we discuss possible sites where muscle remodeling may impact the energetic demands of contraction in skeletal and cardiac muscle.  相似文献   

13.
Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP coordination. Lever arms in both muscles indicated one preferred spherical polar orientation and widely distributed azimuthal orientations relative to the fiber symmetry axis. Cardiac myosin is more radially displaced from the fiber axis. Probe rigidity implies the PAGFP tag reliably indicates cross-bridge orientation in situ and in vivo.  相似文献   

14.
Using polarization microfluorimetry, the interaction of myosin subfragment 1 (S1) isoforms containing alkali light chains A1 and A2 respectively (S1(A1) and S1(A2] with F-actin of single glycerinated rabbit skeletal muscle fibers was studied. The alkali light chains of S1 were substituted by reassociation for A1 or A2 chains modified by a fluorescent label (1.5-IAEDANS) at the single SH-group located in the C-terminus. It was found that in S1(A1) bound to muscle fiber F-actin the mobility of the fluorescent label is lower than in S1(A2). At the same time the S1(A1) and S1(A2) interaction with F-actin induces similar changes in polarized fluorescence of rhodamine linked to falloidine which, in turn, is specifically bound to F-actin. It is concluded that the both S1 isoforms bind to F-actin and produce similar effects on the conformational state of actin filaments in muscle fibers. Local differences between S1(A1) and S1(A2) seem to be due to the interaction of the N-terminus of A1 within S1(A1) with the C-terminal region of actin.  相似文献   

15.
K Ajtai  T P Burghardt 《Biochemistry》1986,25(20):6203-6207
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
When smooth muscle myosin subfragment 1 (S1) is bound to actin filaments in vitro, the light chain domain tilts upon release of MgADP, producing a approximately 3.5-nm axial motion of the head-rod junction (Whittaker et al., 1995. Nature. 378:748-751). If this motion contributes significantly to the power stroke, rigor tension of smooth muscle should decrease substantially in response to cross-bridge binding of MgADP. To test this prediction, we monitored mechanical properties of permeabilized strips of chicken gizzard muscle in rigor and in the presence of MgADP. For comparison, we also tested psoas and soleus muscle fibers. Any residual bound ADP was minimized by incubation in Mg2+-free rigor solution containing 15 mM EDTA. The addition of 2 mM MgADP, while keeping ionic strength and free Mg2+ concentration constant, resulted in a slight increase in rigor tension in both gizzard and soleus muscles, but a decrease in psoas muscle. In-phase stiffness monitored during small (<0.1%) 500-Hz sinusoidal length oscillations decreased in all three muscle types when MgADP was added. The changes in force and stiffness with the addition of MgADP were similar at ionic strengths from 50 to 200 mM and were reversible. The results with gizzard muscle were similar after thiophosphorylation of the regulatory light chain of myosin. These results suggest that the axial motion of smooth muscle S1 bound to actin, upon dissociation of MgADP, is not associated with force generation. The difference between the present mechanical data and previous structural studies of smooth S1 may be explained if geometrical constraints of the intact contractile filament array alter the motions of the myosin heads.  相似文献   

17.
Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP coordination. Lever arms in both muscles indicated one preferred spherical polar orientation and widely distributed azimuthal orientations relative to the fiber symmetry axis. Cardiac myosin is more radially displaced from the fiber axis. Probe rigidity implies the PAGFP tag reliably indicates cross-bridge orientation in situ and in vivo.  相似文献   

18.
E Mushtaq  L E Greene 《Biochemistry》1989,28(15):6478-6482
To elucidate the structure of the cross-bridge intermediates in the actomyosin ATPase cycle, several laboratories have added both ethylene glycol and AMP-PNP to muscle fibers. These studies suggested that ethylene glycol shifts the structure of myosin.AMP-PNP toward the weak-binding conformation, i.e., toward the structure of myosin.ATP. Since only the weak-binding conformation of myosin subfragment 1 (S-1) binds with no apparent cooperativity to the troponin-tropomyosin-actin complex (regulated actin), we used this as a probe to examine the conformation of various S-1.nucleotide complexes in ethylene glycol. Our results show that ethylene glycol markedly weakens the binding strength of S-1, S-1.ADP, and S-1.AMP-PNP to actin but has almost no effect on the binding strength of S-1.ATP. As in muscle fibers, at 40% ethylene glycol, the binding strength of S-1.AMP-PNP to actin becomes very similar to the binding strength of S-1.ATP. In the presence of troponin-tropomyosin, the binding of S-1.AMP-PNP to actin shows no apparent cooperativity in 40% ethylene glycol. Therefore, our results confirm that ethylene glycol shifts the structure of the myosin.AMP-PNP toward the weak-binding conformation. However, our results also suggest that ethylene glycol has a direct effect on the regulated actin complex. This is shown by the fact that ethylene glycol markedly increases the cooperative binding of S-1.ADP to regulated actin both in the presence and in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Myosin is the molecular motor in muscle-binding actin and executing a power stroke by rotating its lever arm through an angle of approximately 70 degrees to translate actin against resistive force. A green fluorescent protein (GFP)-tagged human cardiac myosin regulatory light chain (HCRLC) was constructed to study in situ lever arm orientation one molecule at a time by polarized fluorescence emitted from the GFP probe. The recombinant protein physically and functionally replaced the native RLC on myosin lever arms in the thick filaments of permeabilized skeletal muscle fibers. Detecting single molecules in fibers where myosin concentration reaches 300 microM is accomplished using total internal reflection fluorescence microscopy. With total internal reflection fluorescence, evanescent field excitation, supercritical angle fluorescence detection, and CCD detector pixel size limits detection volume to just a few attoliters. Data analysis manages both the perturbing effect of the TIR interface on probe emission and the effect of high numerical aperture collection of light. The natural myosin concentration gradient in a muscle fiber allows observation of fluorescence polarization from C-term GFP-tagged HCRLC exchanged myosin from regions in the thick filament containing low and high myosin concentrations. In rigor, cross-bridges at low concentration at the end of the thick filament maintain GFP dipole moments at two distinct polar angles relative to the fiber symmetry axis. The lower angle, where the dipole is nearly parallel to fiber axis, is more highly populated than the alternative, larger angle. Cross-bridges at higher concentration in the center of the thick filament are oriented in a homogeneous band at approximately 45 degrees to the fiber axis. The data suggests molecular crowding impacts myosin conformation, implying mutual interactions between cross-bridges alter how the muscle generates force. The GFP-tagged RLC is a novel probe to assess single-lever-arm orientation characteristics in situ.  相似文献   

20.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号