首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Binding of matrix attachment regions to lamin B1.   总被引:33,自引:0,他引:33  
Eukaryotic chromatin is organized into topologically constrained loops that are attached to the nuclear matrix. The regions of DNA that interact with the matrix are called matrix attachment regions (MARs). We studied the spatial distribution of MAR-binding sites in the nuclear matrix from rat liver cells, following a combined biochemical and ultrastructural approach. We found that MAR-binding sites are distributed equally over the internal fibrogranular network and the peripheral nuclear lamina. Internal and peripheral binding sites have similar binding characteristics: both sets of binding sites show specific and saturable binding of MARs from different organisms. By means of a DNA-binding protein blot assay and in vitro binding studies, we identified lamin B1 as a MAR-binding protein, which provides evidence for a specific interaction of DNA with the nuclear lamina.  相似文献   

3.
Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentially expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.  相似文献   

4.
Wang T  Hou G  Wang Y  Xue L 《Journal of biochemistry》2010,148(6):651-658
Although interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) are implicated in various nuclear functions, the understanding of the regulatory mechanism of MARs is still poor. A few MAR-binding proteins (MARBP) have been isolated from some plants and animals, but not from the unicellular algae. Here, we identify a novel MAR-binding protein, namely DMBP-1, from the halotolerant alga Dunaliella salina. The cDNA of DMBP-1 is 2322-bp long and contains a 1626 bp of an open reading frame encoding a polypeptide of 542 amino acids (59 kDa). The DMBP-1 expressed in Escherichia coli specifically binds A/T-rich MAR DNA. The DMBP-1 fused to green fluorescent protein appears only inside the nuclei of Chinese hamster ovarian cells transfected with the pEGFP-MBP, indicating that the protein is located in the nuclei. The findings mentioned above may contribute to better understanding of the nuclear matrix-MAR interactions.  相似文献   

5.
In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.  相似文献   

6.
The matrix attachment region (MAR) is a distinctive genomic DNA involved in a variety of nuclear processes through association with the nuclear matrix. Recent studies suggest that nuclear matrix is altered in the process of apoptosis and presented to the immune system, leading to the production of autoantibodies against its protein components. To see whether MARs are also recognized by autoantibodies, a collection of human sera containing antinuclear antibodies was screened for the presence of binding activities against cloned MARs. We found that MAR-binding activities are quite common in these sera. There was a positive correlation among the MAR-binding titers for three different MAR probes. As expected, the MAR-binding activity was copurified with serum IgG, and subclass analysis with affinity-purified IgG on MAR-Sepharose showed a predominance of IgG2 isotype. Several lines of evidence implied that the anti-MAR antibodies detected here is distinct from the ordinary anti-DNA antibodies that are reactive to bulk DNA.  相似文献   

7.
8.
Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops.  相似文献   

9.
10.
Tubulin folding cofactor D is a microtubule destabilizing protein   总被引:1,自引:0,他引:1  
A rapid switch between growth and shrinkage at microtubule ends is fundamental for many cellular processes. The main structural components of microtubules, the alphabeta-tubulin heterodimers, are generated through a complex folding process where GTP hydrolysis [Fontalba et al. (1993) J. Cell Sci. 106, 627-632] and a series of molecular chaperones are required [Sternlicht et al. (1993) Proc. Natl. Acad. Sci. USA 90, 9422-9426; Campo et al. (1994) FEBS Lett. 353, 162-166; Lewis et al. (1996) J. Cell Biol. 132, 1-4; Lewis et al. (1997) Trends Cell Biol. 7, 479-484; Tian et al. (1997) J. Cell Biol. 138, 821-823]. Although the participation of the cofactor proteins along the tubulin folding route has been well established in vitro, there is also evidence that these protein cofactors might contribute to diverse microtubule processes in vivo [Schwahn et al. (1998) Nature Genet. 19, 327-332; Hirata et al. (1998) EMBO J. 17, 658-666; Fanarraga et al. (1999) Cell Motil. Cytoskel. 43, 243-254]. Microtubule dynamics, crucial during mitosis, cellular motility and intracellular transport processes, are known to be regulated by at least four known microtubule-destabilizing proteins. OP18/Stathmin and XKCM1 are microtubule catastrophe-inducing factors operating through different mechanisms [Waters and Salmon (1996) Curr. Biol. 6, 361-363; McNally (1999) Curr. Biol. 9, R274-R276]. Here we show that the tubulin folding cofactor D, although it does not co-polymerize with microtubules either in vivo or in vitro, modulates microtubule dynamics by sequestering beta-tubulin from GTP-bound alphabeta-heterodimers.  相似文献   

11.
forked mutations affect bristle development in Drosophila pupae, resulting in short, thick, gnarled bristles in the adult. The forked proteins are components of 200-300-microm-long actin fiber bundles that are present transiently during pupal development [Petersen et al., 1994: Genetics 136:173-182]. These bundles are composed of segments of 3-10 microm long, and forked protein is localized along the actin fiber bundle segments and accumulates at the junctions connecting them longitudinally. In the forked mutants, f(36a) and f(hd), F-actin bundles are greatly reduced in number and size, and bundle segmentation is absent. The p-element, P[w(+), falter] contains a 5.3-kb fragment of the forked gene that encodes the 53-kD forked protein [Lankenau et al., 1996: Mol Cell Biol 16:3535-3544]. Expression of only the 53-kD forked protein is sufficient to rescue the actin bundle and bristle phenotypes of f(36a) and f(hd) mutant flies. The 5.3-kb forked sequence, although smaller than the 13-kb region previously shown to rescue forked mutants [Petersen et al., 1994: Genetics 136:173-182], does contain the core forked sequence that encodes actin binding and bundling domains in cultured mammalian cells [Grieshaber and Petersen, 1999: J Cell Sci 112:2203-2211]. These data show that the 53-kD forked protein is sufficient for normal bristle development and that the domains shown previously to be important for actin bundling in cell culture may be all that are required for normal actin bundle formation in developing Drosophila bristles.  相似文献   

12.
《Gene》1996,171(2):307-308
We have isolated and sequenced the 5′ end of the cDNA encoding the rat microtubule-associated protein 1B (MAP1B). We found that this region is highly homologous to the corresponding regions of the human [Lien et al., 22 (1994) 273–280] and mouse [Noble et al., J. Cell Biol. 109 (1989) 3367–3376] MAPIB genes. The combination of the sequence that we are presenting with the previously published sequence [Zauner et al., Eur. J. Cell Biol. 57 (1992) 66–74], represents the complete rat MAP1B cDNA coding sequence.  相似文献   

13.
Comment on: Piwko W, et al. EMBO J 2010; 29:4210-22, Duro E, et al. Mol Cell 2010; 40:632–44, O’Connell BC, et al. Mol Cell 2010; 40:645–57 and O’Donnell L, et al. Mol Cell 2010; 40:619–31.  相似文献   

14.
Chromosomal translocations t(4;11) are based on illegitimate recombinations between the human MLL and AF4 genes, and are associated with high-risk acute leukemias of infants and young children. Here, the question was asked, whether a correlation exists between the location of translocation breakpoints within both genes and the location of S/MARs. In "halo mapping experiments" (to define SARs), about 20 kb of MLL DNA was found to be attached to the nuclear matrix. Similar experiments performed for the translocation partner gene AF4 revealed that SARs are spanning nearly the complete breakpoint cluster region of the AF4 gene. By using short DNA fragments in "scaffold reassociation experiments" (to define MARs), similar results were obtained for both genes. However, Distamycin A competition experiments in combination with "scaffold reassociation experiments" revealed specific differences in the affinity of each tested DNA fragment to bind the isolated nuclear matrix proteins. When the latter data were compared with the known location of chromosomal breakpoints for both genes, an unexpected correlation was observed. DNA areas with strong MAR affinity contained fewer translocation breakpoints, while areas with weak or absent MAR affinity showed a higher density of chromosomal breakpoints.  相似文献   

15.
16.
We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.  相似文献   

17.
We have identified a MAR/SAR recognition signature (MRS) which is common to a large group of matrix and scaffold attachment regions. The MRS is composed of two degenerate sequences (AATAAYAA and AWWRTAANNWWGNNNC) within close proximity. Analysis of >300 kb of genomic sequence from a variety of eukaryotic organisms shows that the MRS faithfully predicts 80% of MARs and SARs. In each case where we find a MRS, the corresponding DNA region binds specifically to the nuclear scaffold. Although all MRSs are associated with a SAR, not all known SARs and MARs contain a MRS, suggesting that at least two classes exist, one containing a MRS, the other not. Evidence is presented that the two sequence elements of the bipartite MRS occupy a position on the nucleosome near the dyad axis, together creating a putative protein binding site. The identification of a MAR- and SAR-associated DNA element is an important step forward towards understanding the molecular mechanisms of these elements. It will allow: (i) analysis of the genomic location of SARs, e.g. in relationship to genes, based on sequence information alone, rather than on the basis of an elaborate biochemical assay; (ii) identification and analysis of proteins that specifically bind to the MRS.  相似文献   

18.
19.
Lipids as targeting signals: lipid rafts and intracellular trafficking   总被引:8,自引:0,他引:8  
Our view of biological membranes has evolved dramatically over the last few decades. In the bilayer model from Singer & Nicholson (Science 1972;175:720-731), both proteins and lipids freely diffuse within the plane of the membrane. Currently, however, membranes are viewed as a mosaic of different compartments or domains maintained by an active cytoskeleton network (Ritchie et al. Mol Membr Biol 2003; 20:13-18). Due to interactions between membrane components, several types of subdomains can form with different characteristics and functions. Lipids are likely to play an important role in the formation of so-called lipid-enriched microdomains or lipid rafts, adding another order of complexity to the membrane model. Rafts represent a type of domain wherein lipids of specific chemistry may dynamically associate with each other, to form platforms important for membrane protein sorting and construction of signaling complexes (Simons & Toomre. Nat Rev Mol Cell Biol 2000;1:31-39). Currently, there are several hypotheses concerning the nature of rafts (reviewed in (Edidin. Annu Rev Biophys Biomol Struct 2003;32: 257-283; Zurzolo et al. EMBO Rep 2003;4:1117-1121)). The most commonly cited one, proposed by Kai Simons (Simons & Ikonen. Nature 1997;387:569-572; Pralle et al. J Cell Biol 2000;148:997-1008), suggests that rafts are relatively small structures ( approximately 50 nm) enriched in cholesterol and sphingolipids within which associated proteins are likely to be concentrated. Another proposal (Anderson & Jacobson. Science 2002;296:1821-1825) suggests that rafts are constructed of lipid shells. These are small dynamic assemblies wherein 'raft' proteins are preferentially associated with certain types of lipids. These 'shells' are thermodynamically stable mobile entities in the plane of the membrane that are able to target the protein they encase to preexisting rafts/caveolae domains. In this review we summarize the data suggesting a specific role for lipid domains in intracellular trafficking and sorting and present a modification of the raft model that may help explain the observed phenomena.  相似文献   

20.
A temperature-sensitive mutant with a defect in glycoprotein synthesis and a cell cycle (G1)-specific arrest at the nonpermissive temperature (Tenner et al., J. Cell. Physiol., 90:145-160, 1977; Tenner and Scheffler, J. Cell. Physiol., 98:251-266, 1979) was investigated further after a human epidermal growth factor (EGF) receptor gene had been transfected and amplified in these cells. While a temperature shift-up lead to an immediate arrest in the biosynthesis of mature EGF receptor and its appearance on the plasma membrane, the observed turnover of the preexisting receptor was too slow to account for the arrest of DNA synthesis in these mutant cells. Tunicamycin could in fact mimic the effect of a temperature shift on the biosynthesis of EGF receptor, but it did not have the same rapid effect on DNA synthesis and cell cycle progression. These mutants have also been shown to induce a set of stress proteins or glucose-regulated proteins, GRPs (Lee et al., J. Cell. Physiol., 129:277-282, 1986). The question is addressed whether the defect in glycoprotein synthesis is the primary defect and a possible cause of the induction of the GRPs, or whether a more basic defect at the level of the endoplasmic reticulum (ER) is responsible for the complex phenotype of the mutant. Our results argue in favor of a primary defect which indirectly affects N-linked glycosylation of proteins, as well as several other functions associated with the ER. We hypothesize that the defect affects the calcium distribution between ER and cytosol, since the calcium ionophore A23187 has an effect similar to that of a temperature shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号