首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
asg-carrying strains of Myxococcus xanthus arose in a selection for mutants defective in cell-cell signalling during fruiting body development. All 15 asg mutations examined were found to lie in one of three genetic loci, asgA, asgB, or asgC. The loci were defined by linkage to different insertions of transposon Tn5 and molecular cloning of asgA. asg mutants of all three types were deficient in the aggregation of cells into mounds of the sort that normally give rise to fruiting bodies. asg mutants were also deficient in spore formation; sporulation is normally one of the last steps in fruiting body development. Consistent with a requirement for cell-to-cell signalling, at 1 to 2 h asg+-carrying cells release a material called A-factor that can rescue development of asg mutants. asgA, asgB, and asgC mutants released 5% or less of the asg+ level of A-factor, as measured by bioassay. The experimental results are consistent with the hypothesis that a deficiency in A-factor production or release is the primary developmental defect in asg mutants and that aggregation and sporulation depend on A-factor. asg mutations at all three loci also changed the color and morphology of growing colonies, and failure to release A-factor may itself arise from a defect in growing cells.  相似文献   

2.
L Plamann  A Kuspa    D Kaiser 《Journal of bacteriology》1992,174(10):3311-3318
  相似文献   

3.
The Myxococcus xanthus asg genes ( asgA, asgB , and asgC ) are necessary for production of extracellular A-signal, which is thought to function as a cell-density signal. Previous analyses of the asgA and asgB genes suggest that they perform regulatory functions. In this work, we localized asgC to a region that contains genes homologous to rpsU, dnaG , and rpoD of the Escherichia coli macromolecular synthesis (MMS) operon. Surprisingly, asgC767 was found to be a mutant allele of rpoD , the gene encoding the major sigma factor of M. xanthus . The mutation in asgC767 results in a glutamate to lysine substitution at amino acid 598, which lies within conserved region 3.1 of the major sigma factors. Previous studies have shown that the asg mutants share a number of growth and developmental phenotypes. We found that A-signal restores developmental expression of an A-signal-dependent gene (Ω4521) in the asgC767 ( rpoDEK598 ) mutant background in a manner similar to that seen in the asgA and asgB mutants. Because the asg mutants have very similar phenotypes and the asg genes encode proteins that appear to have regulatory functions, we hypothesize that the asg gene products function together in a regulatory pathway that is required for extracellular A-signal production.  相似文献   

4.
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Ω4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.  相似文献   

5.
Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression.  相似文献   

6.
A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521.  相似文献   

7.
Guo D  Wu Y  Kaplan HB 《Journal of bacteriology》2000,182(16):4564-4571
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Omega4521 fusion are Lac(+). One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac(-) TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac(+) LPS O-antigen mutants containing Tn5 lac Omega4521 (Tc(r)). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development.  相似文献   

8.
9.
Abstract Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 μM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M. xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.  相似文献   

10.
A Kuspa  L Plamann    D Kaiser 《Journal of bacteriology》1992,174(22):7360-7369
Mutations in any of three asg (A-signalling) loci cause fruiting body development of Myxococcus xanthus to arrest at about the 2-h stage. Development can be restored to asg mutants by the addition of conditioned buffer in which wild-type cells have been developing or of A-factor purified from the conditioned buffer. Two forms of A-factor have been identified: heat-stable A-factor, which is composed of amino acids and peptides, and heat-labile A-factor, which consists of at least two proteases. A-factor is found in conditioned buffer in rough proportion to the cell density. As decreasing amounts of either form of A-factor are added, the developmental response of asg cells decreases until a threshold concentration is reached, below which no response is detected. In addition, wild-type cells fail to develop when their density is decreased below the point at which the level of A-factor is predicted to fall short of this threshold. The development of low-density asg+ cells can, however, be restored by the addition of either form of A-factor. These experiments show that A-factor is important for the development of wild-type cells. Moreover, the development of an asgB mutant that produces 5 to 10% the wild-type level of A-factor can be restored when the cell density is increased 10-fold above the standard density. We propose that the A-signal is used by M. xanthus to specify the minimum cell density required for the initiation of development. Differences in the response to A-factor between different asg mutants suggest that the different asg loci govern A-factor production in diverse ways.  相似文献   

11.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

12.
Myxococcus xanthus has a complex life cycle that includes fruiting body formation. One of the first stages in development has been called A-signalling. The asg (A-signalling) mutants have been proposed to be deficient in producing A-signal, resulting in development arresting at an early stage. In this paper, we report the identification of a new asg locus asgD. This locus appears to be involved in both environmental sensing and intercellular signalling. Expression of asgD was undetected during vegetative growth, but increased dramatically within 1 h of starvation. The AsgD protein is predicted to contain 773 amino acids and to be part of a two-component regulatory system because it has a receiver domain located at the N-terminus and a histidine protein kinase at the C-terminus. An asgD null mutant was defective in fruiting body formation and sporulation on CF medium. However, the defects of the mutant were complemented extracellularly when cells were mixed with wild-type strains or with bsgA, csgA, dsgA or esgA mutants, but were not complemented extracellularly by asgA, asgB or asgC mutants. In addition, the mutant was rescued by a subset of A-factor amino acids. Surprisingly, when the mutant was plated on stringent starvation medium rather than CF, cells were able to form fruiting bodies. Thus, it appears that AsgD is directly or indirectly involved in sensing nutritionally limiting conditions. The discovery of the asgD locus provides an important sensory transduction component of early development in M. xanthus.  相似文献   

13.
The ssbA mutants of Myxococcus xanthus behave as if they are unable to produce a cell-to-cell signal required for normal development. They are unable to form fruiting bodies or spores on developmental medium. They do sporulate, however, if allowed to develop in mixtures with wild-type cells. Fusions of developmentally induced promoters of M. xanthus to the Escherichia coli lacZ gene were used to characterize the effect of the ssbA mutations on developmental gene expression. Each of the five independent fusions tested was found to be dependent upon the ssbA+ allele for full expression. The ssbA mutants were able to express each of these fusions if the mutants were allowed to develop in mixtures with wild-type (Lac-) cells. These results cannot be explained on the basis of genetic exchange. The data are consistent with regulation of gene expression mediated by cell-to-cell interactions.  相似文献   

14.
The csgA mutations of Myxococcus xanthus (formerly known as spoC) inhibit sporulation as well as rippling, which involves ridges of cells moving in waves. Sporulating revertants of CsgA cells were isolated by direct selection, since spores are much more resistant to heat and ultrasonic treatment than are vegetative cells. The revertants fell into seven groups on the basis of phenotype and the chromosomal location of the suppressor alleles. Group 1 contained one allele that was a back mutation of the original csgA mutation. Group 2 contained two linked alleles that were unlinked to the csgA locus and restored fruiting-body formation, sporulation, and rippling. Group 3 revertants regained the ability to sporulate in fruiting bodies but not the ability to ripple. Revertants in groups 4 to 7 were able to sporulate but unable to form fruiting bodies or ripples. The suppressors were all found to be bypass suppressors even though they were not selected as such in most cases. The csgA mutation prevented expression of several developmentally regulated promoters, each fused to a lacZ reporter gene and assayed by beta-galactosidase production. In four of five suppressor groups (groups 4 to 7), expression of each of these csgA-dependent fusions was restored, which suggests that bypass suppression restores developmental gene expression near the point at which expression is disrupted in CsgA mutants. Bypass suppression did not restore production of C factor, and morphological manifestations of development such as rippling and fruiting-body formation were usually abnormal. One interpretation of these results is that C factor has multiple functions and few suppressors can compensate for all of them.  相似文献   

15.
A series of intercellular signals are involved in the regulation of gene expression during fruiting body formation of Myxococcus xanthus. Mutations which block cell interactions, such as csgA (formerly known as spoC), also prevent expression of certain developmentally regulated promoters. csgA+ cells containing Tn5 lac omega DK4435, a developmentally regulated promoter fused to lacZ, began synthesizing lacZ mRNA 12 to 18 h into the developmental cycle. beta-Galactosidase specific activity increased about 12 h later. Neither lacZ mRNA nor beta-galactosidase activity was detected in a developing csgA mutant containing omega DK4435. The developmental promoter and its fused lacZ reporter gene were cloned into a pBR322-derived plasmid vector containing a portion of bacteriophage Mx8. These plasmids preferentially integrated into the M. xanthus chromosome by site-specific recombination at the bacteriophage Mx8 attachment site and maintained a copy number of 1 per chromosome. The integrated plasmids were relatively stable, segregating at a frequency of 0.0007% per generation in the absence of selection. The cloned and integrated promoter behaved like the native promoter, expressing beta-galactosidase at the proper time during wild-type development and failing to express the enzyme during development of a csgA mutant. The overall level of beta-galactosidase expression in merodiploid cells containing one native promoter and one promoter fused to lacZ was about half that of cells containing a single promoter fused to lacZ. These results suggest that the timing of developmentally regulated gene expression is largely independent of the location of this gene within the chromosome. Furthermore, they show that site-specific recombination can be a useful tool for establishing assays for promoter or gene function in M. xanthus.  相似文献   

16.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

17.
Tse H  Gill RE 《Journal of bacteriology》2002,184(5):1455-1457
Mutations in spdR, previously reported to bypass the developmental requirement for B-signaling in Myxococcus xanthus, also bypass the requirement for A-signaling but not C-, D-, or E-signaling. Mutations in spdR restored nearly wild-type levels of sporulation to representative A-signal-deficient mutants carrying asgA476, asgB480, and asgC767 and improved the quality of fruiting body formation in the asgB480 mutant. The defect in A-factor production by the asgB480 mutant was not restored in the spdR2134 asgB480 double mutant.  相似文献   

18.
T. Washburn  J. E. O''Tousa 《Genetics》1992,130(3):585-595
We placed UAA, UAG and UGA nonsense mutations at two leucine codons, Leu205 and Leu309, in Drosophila's major rhodopsin gene, ninaE, by site-directed mutagenesis, and then created the corresponding mutants by P element-mediated transformation of a ninaE deficiency strain. In the absence of a genetic suppressor, flies harboring any of the nonsense mutations at the 309 site, but not the 205 site, show increased rhodopsin activity. Additionally, all flies with nonsense mutations at either site have better rhabdomere structure than does the ninaE deficiency strain. Construction and analysis of a 3'-deletion mutant of ninaE indicates that translational readthrough accounts for the extra photoreceptor activity of the ninaE309 alleles and that truncated opsins are responsible for the improved rhabdomere structure. The presence of leucine-inserting tRNA nonsense suppressors DtLa Su+ and DtLb Su+ in the mutant strains produced a small increase (less than 0.04%) in functional rhodopsin. The opal (UGA) suppressor derived from the DtLa tRNA gene is more efficient than the amber (UAG) or opal suppressor derived from the DtLb gene, and both DtLa and DtLb derived suppressors are more efficient at site 205 than 309.  相似文献   

19.
20.
dnaQ (mutD) encodes the editing exonuclease subunit (epsilon) of DNA polymerase III. Previously described mutations in dnaQ include dominant and recessive mutator alleles as well as leaky temperature-sensitive alleles. We describe the properties of strains bearing null mutations (deletion-substitution alleles) of this gene. Null mutants exhibited a growth defect as well as elevated spontaneous mutation. As a consequence of the poor growth of dnaQ mutants and their high mutation rate, these strains were replaced within single colonies by derivatives carrying an extragenic suppressor mutation that compensated the growth defect but apparently not the mutator effect. Sixteen independently derived suppressors mapped in the vicinity of dnaE, the gene for the polymerization subunit (alpha) of DNA polymerase III, and one suppressor that was sequenced encoded an altered alpha polypeptide. Partially purified DNA polymerase III containing this altered alpha subunit was active in polymerization assays. In addition to their dependence on a suppressor mutation affecting alpha, dnaQ mutants strictly required DNA polymerase I for viability. We argue from these data that in the absence of epsilon, DNA replication falters unless secondary mechanisms, including genetically coded alteration in the intrinsic replication capacity of alpha and increased use of DNA polymerase I, come into play. Thus, epsilon plays a role in DNA replication distinct from its known role in controlling spontaneous mutation frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号