首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A heat-labile plasma factor from genetically resistant 10-R2 Biomphalaria glabrata snails confers passively transferred resistance (PTR) to Schistosoma mansoni when injected into susceptible snails within 24-hr of exposure to miracidia. However, no additional details on PTR have emerged since the initial 1984 report, nor has the plasma resistance factor been characterized. In the present study, new information is provided on the occurrence of resistance factor in plasma of additional types of snails, effect of "priming" resistant plasma donors by prior exposure to miracidia, duration of PTR, molecular weight of resistance factor, and fate of sporocysts in snails with PTR. Susceptible NIH albino snails injected 24 hr prior to exposure to miracidia with individual samples of plasma from a different strain (Salvador B. glabrata) or a different species (B. obstructa) of nonsusceptible snail displayed infection prevalences of 49% or 59% of control levels, respectively, whereas injections of homologous plasma had no effect. PTR was not enhanced by prior exposure of resistant Salvador plasma donors to miracidia. Unexpectedly, PTR induced by injections of Salvador plasma persisted for at least 21 days. The molecular weight of the resistance factor(s) was between 10 and 30 kDa, based on results of centrifugal ultrafiltration. A significantly higher proportion of dead sporocysts occurred in histological sections of tentacles from snails injected with Salvador plasma than in tentacles of snails injected with NIH albino plasma at 7 days postexposure to miracidia. Most dead sporocysts in Salvador plasma-injected snails were undergoing gradual degeneration, rather than rapid, hemocyte-mediated destruction, as occurred in Salvador snails.  相似文献   

2.
Helisoma spp. snails are not susceptible to infection with miracidia of Schistosoma mansoni because the miracidia do not penetrate them. However, in view of the phylogenetic proximity and histocompatibility between Helisoma spp. and the normal intermediate host, Biomphalaria glabrata , schistosome miracidia conceivably could survive if experimentally introduced into the hemocoel of Helisoma spp. To test this hypothesis, schistosome-susceptible NIH albino B. glabrata, schistosome-resistant Salvador B. glabrata, and Helisoma duryi were injected with miracidia of S. mansoni, and the outcome was followed both by monitoring snails for infection for several weeks and by histological examination at 24 and 48 hr post-injection (PI). Patent infections developed in most NIH albino snails but in none of the Salvador B. glabrata or H. duryi individuals. Histological analysis showed a higher proportion of normal sporocysts in various tissues of NIH albino snails at both time periods relative to Salvador snails, which contained mostly sporocysts undergoing hemocytic encapsulation. In H. duryi , nearly all sporocysts were dead by 48 hr PI.  相似文献   

3.
We examined potential variables affecting adoptive transfer of resistance to Schistosoma mansoni in Biomphalaria glabrata implanted with amebocyte-producing organs (APOs) from resistant snails. Transplants of 7 tissues other than the APO (heart, kidney, mantle, albumin gland, brain, digestive gland, and gonad) did not transfer resistance, suggesting a unique property of this structure. Only APOs from donors previously exposed to miracidia transferred resistance, although whether this is evidence for a priming effect or merely the elimination of susceptible donors is not known. Variability in the donor and in the implant itself apparently was unimportant, inasmuch as implants from small or large snails or from 2 separate donors all conferred similar levels of resistance. Recipients of APOs from 2 additional resistant strains of B. glabrata, 10-R2 and Salvador, also displayed resistance. However, no resistance was transferred by APOs from schistosome-refractory B. obstructa. Histological examination of implants removed from recipients that either did or did not show transferred resistance revealed no differences in mitotic activity. Furthermore, implanted APOs from B. obstructa displayed no mitotic activity. Finally, reexposure of snails with transferred resistance to a large dose of miracidia caused infection in 70%, suggesting that either transferred resistance is transitory or it can be overwhelmed.  相似文献   

4.
Passive transfer of natural resistance to Schistosoma mansoni (PR-1 strain) has been successfully accomplished in the snail intermediate host, Biomphalaria glabrata (PR albino, M-line strain). Injection of serum (cell-free hemolymph) from a naturally schistosome-resistant strain of B. glabrata (10-R2) into PR albino snails induced a complete protection from a primary infection with the parasite in 29 of 48 snails (60.4%). In comparison, inoculation of homologous PR albino serum or heterologous proteins (fetal calf serum) had no effect. Moreover, this protection could be induced 24 hr prior to, or 24 hr after, exposure to the parasite, although heating of 10-R2 serum to 70 C for 30 min destroyed its protective ability. When in vitro transformed sporocysts were preincubated in 10-R2 or PR albino serum and then were injected into susceptible snails, a high level of infection (88.5 and 83.3%, respectively) was produced in both groups. Thus, the 10-R2 serum factor does not appear to be mediating specific parasite recognition by host hemocytes. Alternatively, our results suggest that 10-R2 serum possesses a heat-labile factor which specifically activate B. glabrata hemocytes to encapsulate and destroy sporocysts whereas PR albino serum lacks this factor.  相似文献   

5.
Schistosomiasis was found in many agricultural workers from Yemen who are residing in the San Joaquin Valley, and a study was done to evaluate the public health hazard of this imported disease. If the necessary intermediate hosts are present, a local focus of infection could be established.Numerous Biomphalaria obstructa snails collected in the vicinity of the Avenue 82 irrigation canal near Oasis, Riverside County, showed no evidence of natural schistosome infection. Laboratory-reared offspring of these snails were exposed to miracidia of Schistosoma mansoni originating from Yemen immigrants and to miracidia from a standard laboratory strain of Puerto Rican origin obtained from the National Institutes of Health. All exposures of California B. obstructa were made with a laboratory stock of highly susceptible B. glabrata snails also obtained from NIH as controls. Although miracidia penetrated California snails no evidence of infection was detected whereas the B. glabrata controls showed normal, mature infections with numerous cercariae.There appears little likelihood that B. obstructa can serve as intermediate host for schistosomiasis.  相似文献   

6.
The distribution and abundance of the lysosomal enzyme markers, acid phosphatase (AP), peroxidase (PO), and nonspecific esterase (NE), within circulating blood cells (hemocytes) were examined in a schistosome-susceptible (PR albino M-line) and a resistant (10-R2) strain of Biomphalaria glabrata during the course of infection with Schistosoma mansoni. The dynamics of serum (cell-free hemolymph) AP activities and total hemocyte numbers in infected snails also were investigated. Hemocyte subpopulations, as determined by these enzyme markers, responded differently to parasite infection between snail strains. Generally, the hemocyte subpopulations within PR albino snails remained largely unchanged, whereas the same subpopulations in 10-R2 snails fluctuated considerably. The distribution of AP in the hemocytes of 10-R2 snails decreased by 1 hr postexposure (PE) to the parasite and remained low through 12 hr before increasing to control values at 24 hr and 2 wk PE. In comparison, PO activity increased by 1 hr PE and peaked at 12 hr before dropping to 0 hr values by 2 wk PE. The NE activity exhibited still another pattern with the percentage of NE-positive cells decreasing from 0 to 12 hr PE followed by a recovery to 0-hr values by 24 hr. The abundance of these hemocyte enzymes followed a similar pattern to that of their distribution, although some differences were observed. Serum AP values varied little in PR albino snails except for a significant increase at 2 wk PE, indicating a possible response to tissue damage resulting from migrating daughter sporocysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

8.
Laboratory-raised juvenile albino Biomphalaria glabrata snails show a wide range of natural resistance to a single infection with 50 or 100 miracidia of Echinostoma lindoense. In the most resistant snails all sporocysts are destroyed in peripheral tissues soon after miracidial penetration. In less resistant snails some sporocysts reach the heart where they are encapsulated. In fully susceptible snails, all sporocysts rapidly migrate to the heart, where they mature and continue to develop. The greater part of our B. glabrata colony consists of snails in which sporocysts reaching the heart will survive, but in which a varying number of sporocysts will be destroyed in the tissues. These snails are usually considered susceptible, as they do become infected. Tissue reactions induced by sporocysts following a single infection in naturally resistant snails are similar to reactions in snails with an acquired resistance. In fully susceptible snails, the amebocyte-producing organ remains small and inactive. It is slightly to moderately stimulated in partially resistant snails in which destruction of sporocysts occurs in the tissues and surviving larvae are found in the ventricle. In snails in which amebocyte aggregates or capsules develop in the ventricle, the organ becomes markedly enlarged. Migration of sporocysts in the snail appears not to be continuous, as periodic rests seem to occur. Migration follows intrusion of the sporocyst through the tissues, induced by bodily distension and contraction, and then proceeds within the arteries against the blood flow, passing from one endothelial attachment site to another, possibly aided by negative pressure during ventricular diastole.  相似文献   

9.
The phagocytic activity of hemocytes from 6-8-mm M-line Biomphalaria glabrata snails was studied in an in vitro assay using glutaraldehyde-fixed sheep erythrocytes (SRBC) as target cells. For individual snails, the percentage of hemocytes ingesting SRBC during a 1-hr interval, termed the phagocytic activity index (PAI), was determined. Hemocytes from snails infected for 1 day with Echinostoma paraensei had a slightly elevated PAI, but at both 8 and 30 days postexposure (DPE), hemocytes from infected snails had a significantly lower PAI than controls. Hemocytes taken from snails at 8 DPE also had a low PAI using rabbit erythrocytes and yeast as target cells. The low PAI at 8 DPE is attributed to the presence of large numbers of poorly spreading hemocytes with low phagocytic activity. Hemocytes from snails with 30-day infections were well spread but nonetheless had a low PAI. The presence of plasma from 8-day infected snails did not alter the PAI of hemocytes from control snails, nor was the PAI of hemocytes from infected snails changed by plasma from control snails. SRBC preincubated for 60 min in plasma from various groups of M-line snails did not elicit an increase in PAI when presented to hemocytes from control snails; in some cases, as with plasma from 6-8-mm control snails, such preincubation significantly reduced the PAI below levels obtained using SRBC preincubated in culture medium. As compared to hemocytes from snails with normally developing, 8-day-old intraventricular sporocysts (IS), hemocytes from snails exposed to infection but subsequently lacking IS had a significantly higher PAI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The icthyosporean, Capsaspora owczarzaki, a known predator of Schistosoma mansoni sporocysts in vitro, is more prevalent in laboratory-reared strains of the intermediate snail host, Biomphalaria glabrata resistant to S. mansoni, than from the susceptible M line strain. We examined whether B. glabrata resistant to the NIH-PR-1 strain of S. mansoni from 2 regions in Brazil were also host to C. owczarzaki. Symbiont presence was examined using hemolymph culturing and nested polymerase chain reaction of snail genomic DNA with primers designed to specifically amplify sequences from relatives of the Icthyosporea. All B. glabrata of the resistant Salvador strain from the laboratory of Dr. Lobato Paraense in Rio de Janeiro, Brazil (n = 46) tested negative for symbionts. Three of 18 semiresistant 10-R2 B. glabrata from the laboratory of Dr. Barbosa in Recife, Brazil tested positive for C. owczarzaki. Another icthyosporean, Anurofeca sp., was identified from 1, 10-R2 snail and from 2 of 12 field-collected B. glabrata from Praia do Forte Orange, Ilha de Itamaracá. Snails from 2 other sites, Hotel Colibri, Pontezinha and Praia do Sossego, Ilha de Itamaracá, were negative for Anurofeca. Two genera of ciliates were also identified. Paruroleptus sp. was found in 4, 10-R2 snails and Trichodina sp. was identified in 2 field-collected snails from Praia do Forte Orange and Praia do Sossego.  相似文献   

11.
Abstract. The cytokine interleukin-1β (IL-1β) mediates interactions of immune and inflammatory cells in mammals. Previous reports also have linked plasma (cell-free hemolymph) levels of IL-1β in the snail Biomphalaria glabrata to resistance against Schistosoma mansoni . In the present study, fluorescent probes were used to study larval schistosome and snail hemocyte viability during in vitro encounters. Hemolymph (plasma and hemocytes) from schistosome-susceptible (M-line) and resistant (13–16-R1) B. glabrata was added to sporocysts of S. mansoni and the viability of hemocytes and parasites was assessed. Next, IL-1β was added to sporocyst-hemolymph samples, the viability of sporocysts and hemocytes determined and then compared to control assays. The number of live sporocysts present after incubation for 1 h with hemolymph from M-line snails was significantly greater than the number seen when hemolymph from 13–16-R1 snails was tested. Nearly all sporocysts survived the 1 h incubation with M-line hemolymph, and most of the hemocytes attached to sporocysts were dead. In contrast, nearly all sporocysts were dead when hemolymph from 13–16-R1 snails was tested, and most attached hemocytes were alive. Addition of IL-1β to M-line hemolymph resulted in a dramatic increase in sporocyst death. Addition of IL-1β to 13–16-R1 hemolymph produced a small but significant increase in the rate of sporocyst death. These results indicate that the concentration of IL-1β present in hemolymph from B. glabrata is directly related to the ability of this snail to kill S. mansoni sporocysts in vitro.  相似文献   

12.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

13.
Humoral factors have been associated with resistance of Biomphalaria glabrata to infection by Schistosoma mansoni. The goal of this study was to determine which serum (cell-free hemolymph) proteins bind to the surface of S. mansoni sporocysts. For this, 125I-labeled serum from schistosome-resistant (10-R2) and -susceptible (M-line) B. glabrata was incubated with sporocysts, washed, and then subjected to SDS-PAGE and autoradiography. Other samples examined included radiolabeled 10-R2 and M-line serum, sporocysts incubated with unlabeled serum followed by incubation with radiolabeled serum, and radiolabeled sporocysts. Results indicated that many polypeptides in the serum from both strains of B. glabrata were radiolabeled. Dominating both profiles were bands in the 90-210-kDa range. However, some differences between the serum of the 2 snail strains were observed with M-line serum having several radiolabeled polypeptides in the 31-40- and 66-85-kDa range that were absent in serum from 10-R2 B. glabrata. When sporocysts were incubated with radiolabeled serum, 3 polypeptides (116, 180, 210 kDa) from both snail strains bound to the surface of the parasite. Further, a 55-kDa polypeptide bound to sporocysts incubated with 10-R2 serum but did not bind to those parasites incubated with M-line serum. Preincubation of sporocysts with unlabeled serum prior to incubation with radiolabeled serum significantly inhibited the uptake of radiolabeled proteins. This differential binding of serum polypeptides from different strains of B. glabrata may be important in determining resistance or susceptibility of the snail to larval schistosome infection.  相似文献   

14.
Adoptively transferred resistance to Schistosoma mansoni in the snail intermediate host Biomphalaria glabrata was measured as a function of miracidial challenge dose. Schistosome-susceptible snails implanted with the amebocyte-producing organ (APO) from resistant donors showed 29 and 39% prevalences of infection after challenge with 5 and 10 miracidia, respectively, but 68-83% prevalences when exposed to 25-200 miracidia. Prevalences in control (untampered) susceptible snails ranged from 97 to 100% at the different miracidial doses. Higher infection prevalences at elevated doses suggest that a range of transferred resistance occurs and possibly that low levels of APO-derived plasma factors or hemocytes in some recipients can be overwhelmed by larger numbers of parasites.  相似文献   

15.
Two populations of Biomphalaria glabrata snails differing slightly in their susceptibility to Schistosoma mansoni infection showed dramatic differences in cercarial output per snail. Exposed to five or more miracidia, snails from a group with a 90-100% susceptibility rate (Group A) produced nearly twice the number of cercariae as those from a group with a 70-80% susceptibility rate (Group B). Exposure of individual snails to known numbers of miracidia resulted in higher numbers of primary (mother) sporocysts in Group A snails than in Group B snails. However, monomiracidial exposure of snails from both groups resulted in equivalent numbers of cercariae produced per positive snail, indicating that, once established, all primary sporocysts possess a similar reproductive potential. Morphometric analysis of serially sectioned 9-day-old primary sporocysts supported this conclusion; the size of the primary sporocysts and the size and numbers of secondary (daughter) sporocysts within each primary sporocyst were comparable in snails from both groups. The data indicate cercarial production in this system is regulated prior to, and/or during, early development of the primary sporocyst.  相似文献   

16.
Responses of the hematopoietic organ (HO) in Biomphalaria glabrata snails to extracts and excretory-secretory (E-S) products of Echinostoma paraensei larvae were studied to understand the HO-activating mechanism. M-line B. glabrata snails were injected with materials from E. paraensei larvae, and the size of the HO was ascertained in histological sections. The size of HO in snails injected with extracts and E-S products from sporocysts and rediae was significantly larger than that in snails injected with culture medium. E-S products of sporocysts were fractionated using ultrafiltration membranes, polyacrylamide gel electrophoresis, and electrophoretic elution. Examination of fractionated E-S products of sporocysts revealed that specific components of E-S products were responsible for HO-stimulating activity.  相似文献   

17.
Miracidia of Echinostoma paraensei were cultured in medium containing 14C-labeled amino acids, allowed to transform into sporocysts, and their excretory/secretory products (E-S) were collected and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Effects of E-S on hemocytes of Biomphalaria glabrata were also assessed. E-S collected during day 1 of culture (E-S1) contained several polypeptides, none of which were labeled, suggesting that E-S1 are largely preformed. E-S1 significantly depressed the ability of hemocytes to phagocytose sheep red blood cells (SRBC), but otherwise had little effect on hemocyte structure or behavior. E-S released by sporocysts in day-2 cultures (E-S2) and in older cultures generally were similar and also contained several polypeptides, many of which were labeled, indicating active synthesis of E-S in vitro. E-S2 strongly inhibited hemocyte uptake of SRBC. Also, hemocytes pretreated with E-S2 assumed a spherical shape and failed to spread normally. E-S obtained through 10 days of culture mediated this effect. Active components of E-S2 were greater than 100 kDa in their native configuration, were heat- and trypsin-labile, and were bound by anti-E-S antibodies. Both greater than 200- and 80-kDa bands were prominent in anti-E-S immunoprecipitates. Hemocytes derived from snails of the 13-16-R1 strain of B. glabrata (a strain resistant to infection with Schistosoma mansoni), when pretreated with E-S2, bound to sporocysts of S. mansoni but lost their ability to damage such sporocysts. E-S2 interfered with hemocyte functions in ways inferred from earlier classic in vivo studies of trematode-snail interactions.  相似文献   

18.
Suspensions of miracidia and cercariae of Schistosoma mansoni were subjected to repeated freeze-thaw cycles and then injected into resistant Salvador strain Biomphalaria glabrata snails. A pronounced increase in the number of mitotic figures, relative to uninjected, sham-injected, or diluent (water)-injected controls, was observed in the amebocyte-producing organ (APO) at 3 days postinjection (PI). After centrifugation of miracidia freeze-thaw extract (FTE), the resulting supernatant (FTS) and pellet possessed equal stimulatory activity that was approximately half that seen with FTE. Ultracentrifugation of miracidia FTS resulted in a supernatant that retained full activity, indicating a soluble molecule. Heat treatment of miracidia FTE reduced but did not eliminate activity, suggesting a nonprotein active component. Concentration or dilution of FTS by a factor of 10 gave a nonlinear dose-response relationship. Susceptible NIH albino snails injected with miracidia FTE had increased mitotic activity in the APO, which was much less than that seen in Salvador snails, whereas injection of miracidia FTE into Helisoma duryi had no discernable effect. Measurement of mitotic activity as a function of time PI showed no increase in numbers of mitotic figures in the APO at 18 hr but a large increase at 24 hr PI. Mitotic activity returned to preinjection levels by 96 hr PI, although a subsequent increase occurred at 120 hr PI.  相似文献   

19.
M line Biomphalaria glabrata snails of 4-, 6-, 8-, 10-, 12-, or 20-mm shell diameter were individually exposed to 10 miracidia each of Echinostoma paraensei. Snails 10 mm in size or larger were found to be significantly less likely to harbor intraventricular sporocysts than snails in smaller size categories. The percentage of snails with intraventricular sporocysts that also developed hemocyte encapsulation responses generally increased with snail size, whereas the number of snails that ultimately became heavily parasitized with large numbers of daughter rediae decreased significantly with snail size. However, at least some snails in each size category developed such disseminated infections. Comparative histological study of 6- and 12-mm snails revealed that parasites readily penetrated both groups of snails, but were more likely to be encapsulated and destroyed in larger snails. Encapsulation reactions were noted from 1 to 15 days postexposure (dpe) in 12-mm snails, indicating that unlike other commonly studied models of trematode-gastropod interactions, snail resistance is not always manifested during the first few days following exposure. Upon infection with E. paraensei, both 6- and 12-mm snails showed significant increases in the number of circulating hemocytes/mm3 of hemolymph. In 6-mm snails, such increases occurred concurrently with successful parasite development. Hemocyte counts in 6-mm snails were significantly elevated from 4 to 15 dpe whereas in 12-mm snails they were significantly elevated from 2 to 30 dpe. A significant degree of resistance to E. paraensei develops as B. glabrata grows and attains sexual maturity. A mechanistic understanding of this phenomenon awaits further investigation.  相似文献   

20.
In strains of the snail Biomphalaria glabrata (Gastropoda) that are resistant to the parasite Schistosoma mansoni (Trematoda), hemocytes in the hemolymph are responsible for elimination of S. mansoni sporocysts. The defensive role of reactive nitrogen species was investigated in in vitro interactions between hemocytes derived from the resistant 13-16-R1 strain of B. glabrata and the parasite. The nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methylester (L-NAME) and the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide reduced cell-mediated killing of S. mansoni sporocysts. To determine if peroxynitrite (ONOO-) is involved in killing, assays were run in the presence of the ONOO- scavengers uric acid and deferoxamine. These did not influence the rate of parasite killing, indicating that NO is directly responsible for mediating cytotoxicity, but ONOO- is not. The combination of the NOS inhibitor L-NAME and catalase, an enzyme that detoxifies hydrogen peroxide (H2O2), reduced average sporocyst mortality to a greater extent than L-NAME alone. Killing of the sporocysts was, however, not totally inhibited. It is suggested that NO and H2O2 are both involved in hemocyte-mediated toxicity of 13-16-R1 B. glabrata against S. mansoni sporocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号