首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of ammonium salts to N2 fixing continuous cultures of Clostridium pasteurianum caused immediate stop of nitrogenase synthesis, while the levels of glutamine synthetase, glutamate dehydrogenase and asparagine synthetase remained constant. No evidence for an interconversion of the glutamine synthetase was found. The activities of glutamate synthase in crude extracts were inversely related to the nitrogenase levels. The intracellular glutamine pool rapidly expanded during nitrogenase repression and decreased as fast during derepression while the pool sizes of all other amino acids were not strongly related to the rate of nitrogenase formation. These investigations suggest glutamine as corepressor of nitrogenase synthesis.  相似文献   

2.
Formate metabolism supported nitrogen-fixation activity in free-living cultures of Rhizobium japonicum. However, formate0dependent nitrogense activity was observed only in the presence of carbon sources such as glutamate, ribose or aspartate which by themselves were unable to support nitrogenase activity. Formate-dependent nitrogenase activity was not detected in the presence of carbon sources such as malate, gluconate or glycerol which by themselves supported nitrogenase activity. A mutant strain of R. japonicum was isolated that was unable to utilise formate and was shown to lack formate dehydrogenase activity. This mutant strain exhibited no formate-dependent nitrogenase activity. Both the wild-type and mutant strains nodulated soybean plants effectively and there were no significant differences in the plant dry weight or total nitrogen content of the respective plants. Furthermore pea bacteroids lacked formate dehydrogenase activity and exogenously added formate had no stimulatory effect on the endogenous oxygen uptake rate. The role of formate metabolism in symbiotic nitrogen fixation is discussed.Abbreviation FDH formate dehydrogenase  相似文献   

3.
The production of biomass, polysaccharide storage material and H2 from malate was studied in the wild-type and mutants RdcI, RdcII and RdcI/cII of Rhodobacter capsulatus. The mutants are defective in either copy I, copy II or both copies of the nitrogenase genes nifA and nifB. Stationary phase levels of biomass, polysaccharide and H2 were determined in phototrophic batch cultures grown with 30 mM of d,l-malate and either 2, 5, or 8 mM of ammonium or 7 mM of glutamate. Calculation of the amounts of malate converted into the three products revealed that, at 8 mM of ammonium and 7 mM of glutamate, malate consumption and product formation were balanced. But with decreasing ammonium concentrations malate not converted into biomass was utilized with decreasing efficiency in polysaccharide and H2 formation. This suggests formation of unknown products at the lower ammonium concentrations. Under conditions of optimal N supply, 80% of the malate not used for biomass production was converted by the wild-type and strain RdcII to H2 and CO2. Mutant RdcI exhibited slightly decreased H2 production. The double mutant did not evolve H2 but accumulated increased amounts of polysaccharide. However, the amounts of polysaccharide were lower than should be expected if all of the spare malate, not utilized by the double mutant for H2 production, was converted into storage material. This and incomplete conversion of malate into known products at low ammonium supplies suggests that polysaccharide accumulation does not compete with the process of H2 formation for malate.  相似文献   

4.
The primary steps of N2, ammonia and nitrate metabolism in Klebsiella pneumoniae grown in a continuous culture are regulated by the kind and supply of the nitrogenous compound. Cultures growing on N2 as the only nitrogen source have high activities of nitrogenase, unadenylated glutamine synthetase and glutamate synthase and low levels of glutamate dehydrogenase. If small amounts of ammonium salts are added continuously, initially only part of it is absorbed by the organisms. After 2–3 h complete absorption of ammonia against an ammonium gradient coinciding with an increased growth rate of the bacteria is observed. The change in the extracellular ammonium level is paralleled by the intracellular glutamine concentration which in turn regulates the glutamine synthetase activity. An increase in the degree of adenylation correlates with a repression of nitrogenase synthesis and an induction of glutamate dehydrogenase synthesis. Upon deadenylation these events are reversed.—After addition of nitrate ammonia appears in the medium, probably due to the action of a membrane bound dissimilatory nitrate reductase.—Addition of dinitrophenol causes transient leakage of intracellular ammonium into the medium.  相似文献   

5.
When α-ketoglutarate is the substrate, malate is a considerably more effective inhibitor of glutamate dehydrogenase than glutamate, oxalacetate, aspartate, or glutarate. Malate is a considerably poorer inhibitor when glutamate is the substrate. Malate is competitive with α-ketoglutarate, uncompetitive with TPNH, and noncompetitive with glutamate. The above, plus the fact that malate is a considerably more potent inhibitor when TPNH rather than TPN is the coenzyme, indicates that malate is predominantly bound to the α-ketoglutarate site of the enzyme-TPNH complex and has a considerably lower affinity for the enzyme-TPN complex. Ligands which decrease binding of TPNH to the enzyme such as ADP and leucine markedly decrease inhibition by malate. Conversely, GTP, which increases binding of TPNH to the enzyme also enhances inhibition by malate. Malate also decreases interaction between mitochondrial aspartate aminotransferase and glutamate dehydrogenase. This effect of malate on enzyme-enzyme interaction is enhanced by DPNH and GTP which also increase inhibition of glutamate dehydrogenase by malate and is decreased by TPN, ADP, ATP, α-ketoglutarate, and leucine which decrease inhibition of glutamate dehydrogenase by malate. These results indicate that malate could decrease α-ketoglutarate utilization by inhibiting glutamate dehydrogenase and retarding transfer of α-ketoglutarate from the aminotransferase to glutamate dehydrogenase. These effects of malate would be most pronounced when the mitochondrial level of α-ketoglutarate is low and the level of malate and reduced pyridine nucleotide is high.  相似文献   

6.
Inorganic nitrogen metabolism in two cellulose degrading clostridia, the mesophile Clostridium cellobioparum and the thermophile Clostridium thermocellum was investigated. Both strains show acetylene reduction (i.e. possibly nitrogenase activity), contain glutamine synthetase, glutamate dehydrogenase and glutamate-dependent transaminases. C. cellobioparum additionally contains a NADH-dependent glutamate synthase and a NH 4 + -repressible glycine dehydrogenase (NADPH). Remarkably, acetylene reduction in C. thermocellum is not repressed by ammonium, casting doubt whether this activity is due to nitrogenase. The results are compared with the data from other saccharolytic clostridia.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase (glutamate synthase)  相似文献   

7.
1. Glutamate dehydrogenase and malate dehydrogenase solubilized from liver microsomes were able to rebind to microsomal vesicles while the corresponding dehydrogenases extracted from mitochondria showed no affinity for microsomes. 2. Competition was noticed between microsomal glutamate dehydrogenase and microsomal malate dehydrogenase in the binding to microsomal membranes. Mitochondrial malate dehydrogenase or bovine serum albumin did not inhibit the binding of microsomal glutamate dehydrogenase to microsomes. 3. Binding of microsomal glutamate dehydrogenase to microsomal membranes decreased when microsomes was preincubated with trypsin. 4. Rough microsomal glutamate dehydrogenase was more efficiently bound to rough microsomes than smooth microsomes. Conversely, smooth microsomal glutamate dehydrogenase had higher affinity for smooth microsomes than for rough microsomes. 5. A difference was noticed among the glutamate dehydrogenase isolated from rough and smooth microsomes, and from mitochondria, which suggested the possibility of minor post-translational modification of enzyme molecules in the transport from the site of synthesis to mitochondria.  相似文献   

8.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4+ concentrations were investigated during the transition from an NH4+ free medium to one containing NH4+ ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80-100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1-2 hrs the NH4+ remaining in the medium is absorbed too, indicating the induction or activation of a new NH4+ transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4+ level leads to a reversible rise in the glutamine synthetase activity which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4+ level of about 0.6 mM does not change when extracellular NH4+ is taken up and repression of nitrogenase starts.  相似文献   

9.
Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase amidotransferase (glutamate synthase)  相似文献   

10.
Control of nitrogenase and bacteriochlorophyll a (BChl) by light was studied under steady-state conditions with continuous cultures of Rhodobacter capsulatus B10S supplied with malate and growth-limiting amounts of ammonium. Consumption of malate and, correspondingly, the C/N ratio at which malate and ammonium were consumed increased when illumination was increased from 3 to approximately 20 klx and became constant at higher illuminations of up to 40 klx. Essentially the same kinetics were observed with respect to nitrogenase activity of cells, contents of nitrogenase polypeptides, and nifH promoter activity. Substrate consumption was half-maximal at 8 klx and was independent of the presence of nitrogenase. Therefore, it is concluded that light controls the C/N ratio (a quantitative measure of the nitrogen status of cells), which in turn is involved in the control of nitrogenase at the level of nif promoter activity. Post-translational regulation of nitrogenase activity by ADP-ribosylation was not observed under steady-state conditions, but it took place when illumination was suddenly decreased to the range where malate consumption and, consequently, the C/N ratio decreased. Irrespective of the presence or absence of nitrogenase, specific BChl contents of the cultures were constant above 20 klx, and they increased at lower illuminations. These results do not confirm a recently proposed link between nitrogen fixation and photosynthesis as represented by BChl. Received: 29 October 1998 / Accepted: 30 December 1998  相似文献   

11.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

12.
The effects of supplied ammonium and nitrate on the amino and organic acid contents and enzyme activities of cell suspension cultures of Acer pseudoplatanus L. were examined. Regardless of nitrogen source the pH of the culture medium strongly affected the malate and citrate contents of the cells; these organic acid pools declined at pH 5, but increased at pH 7 and 8. Over a period of two days, ammonium had little effect on the responses of the organic acid pool sizes to the pH of the medium. In contrast, ammonium had a strong influence on amino acid pool sizes, and this effect was dependent on the pH of the medium. At pH 5 there was no increase in cell ammonium or amino acid contents, but at higher pH values cellular ammonium content rose, accompanied by accumulation of glutamine, glutamate and asparagine. Over several days, supplied ammonium led to an increase in activity of glutamate dehydrogenase irrespective of any changes in internal ammonium and amino acid contents. If the pH of the medium was allowed to fall below pH 4 in the presence of ammonium, phosphoenolpyruvate (PEP) carboxylase activity declined to a very low value over several days; at higher pH, the activity of this enzyme, and that of NAD malic enzyme and NAD malate dehydrogenase, remained substantial irrespective of whether the nitrogen source was NH+4 or NO-3.  相似文献   

13.
Kinetic and Sephadex gel filtration epxeriments indicate that in the presence of palmitoyl-CoA, glutamate dehydrogenase forms a complex with mitochondrial malate dehydrogenase. In this complex, palmitoyl-CoA is bound to glutamate dehydrogenase but is not bound to malate dehydrogenase. Consequently, palmitoyl-CoA inhibits glutamate dehydrogenase while glutamate dehydrogenase completely protects malate dehydrogenase activity against palmitoyl-CoA inhibition. In the absence of palmitoyl-CoA, interaction between these two enzymes is quite weak. However, if the two enzymes are incubated with the bifunctional crosslinker dimethyl 3,3′-dithiobispropionimidate and chromatographed on Sephadex G-200, about 46% of the malate dehydrogenase is eluted with glutamate dehydrogenase in the void volume. If glutamate dehydrogenase or crosslinker is omitted, then malate dehydrogenase is not found in the void volume or other early fractions from the column. This indicates that in the absence of palmitoyl-CoA the crosslinker prevents dissociation of the weak complex by forming a covalent bond between the two enzymes. Furthermore, if the two enzymes are incubated in polyethylene glycol, there is a marked increase in the amount of both enzymes precipitated.  相似文献   

14.
Soybean cell suspension cultures grew on defined media with ammonium as the sole nitrogen source if Krebs cycle acids were added. Satisfactory growth was obtained with ammonium salts of citrate, malate, fumarate, or succinate, when compared with the regular medium containing nitrate and ammonium. Little or no growth occurred when ammonium salts of shikimate, tartrate, acetate, carbonate, or sulfate were used. The cells also grew well with l-glutamine as nitrogen source. The specific activities of glutamine synthetase and isocitrate dehydrogenase (nicotinamide adenine dinucleotide phosphate) were lower than in cells grown on a nitrate medium, but ammonium enhanced the activity of glutamate dehydrogenase. Cells of soybean, wheat, and flax have been cultured for an extended period on the ammonium citrate medium.  相似文献   

15.
Nutritional factors controlling derepression of nitrogenase activity in Parasponia-Rhizobium strain ANU 289 were studied in stationary and agitated liquid cultures. Altering type and/or concentrations of the constituents of the derepression medium in respect of carbon and nitrogen sources influenced both derepression kinetics as well as the maximal level of activity. Hexose sugars and disaccharides stimulated nitrogenase activity three to six-fold compared to pentose sugars. Activity was also modulated by combining sugars with some organic acids such as succinate, fumarate and pyruvate but not with others (e.g. -ketoglutarate, malate, malonate). Of the range of nitrogen sources tested, either casamino acids (at 0.05%, but not at 0.1%), glutamate, proline or to a lesser extent histidine (each at 5 mM N) supported significant derepression of nitrogenase activity. Notably glutamine, urea, alanine, ammonium sulfate, nitrate, nitrite (each at 5 mM N) and yeast extract (0.05%) failed to derepress or support nitrogenase activity. Ammonium (5 mM) abolished established nitrogenase activity of rapidly agitated cultures within 15 h after addition. This inhibitory effect was alleviated by the addition of methionine sulfoximime (10 mM). Thus, in view of strong glutamine effects, ammonium repression appears to be mediated by glutamine and not by ammonium itself.Abbreviations HEPES [4-(2-hydroxyethyl)-1-piperazine-ethane; sulfonic acid] - MOPS [3-(N-morpholino) propane sulphonic acid] - MSX Methionine sulfoximine  相似文献   

16.
Experiments performed in polyethylene glycol and with a divalent crosslinker indicate that both mitochondrial malate dehydrogenase and aspartate aminotransferase can form hetero enzyme—enzyme complexes with either glutamate dehydrogenase or citrate synthase. In general, these as previous results indicate that complexes with the aminotransferase are favored over those with malate dehydrogenase and complexes with glutamate dehydrogenase are favored over those with citrate synthase. When the levels of enzymes are low, the only detectable complex is between the aminotransferase and glutamate dehydrogenase. Under these conditions, palmitoyl-CoA is required for complexes between the other three enzyme pairs, however, palmitoyl-CoA also enhances interactions between glutamate dehydrogenase and the aminotransferase. DPNH disrupts complexes with malate dehydrogenase and has little effect on those with the aminotransferase, while oxalacetate disrupts complexes with citrate synthase but has little effect on those with glutamate dehydrogenase. The citrate synthase-aminotransferase complex was favored in the presence of DPNH plus malate, which disrupt the other three enzyme-enzyme complexes. Glutamate dehydrogenase has a higher affinity and capacity than citrate synthase for palmitoyl-CoA. Consequently, lower levels of palmitoyl-CoA are required to enhance interactions with glutamate dehydrogenase. Furthermore, glutamate dehydrogenase can compete with citrate synthase for palmitoyl-CoA and thus can prevent palmitoyl-CoA from enhancing interactions between citrate synthase and either malate dehydrogenase or the aminotransferase.  相似文献   

17.
Binding experiments indicate that mitochondrial aspartate aminotransferase can associate with the alpha-ketoglutarate dehydrogenase complex and that mitochondrial malate dehydrogenase can associate with this binary complex to form a ternary complex. Formation of this ternary complex enables low levels of the alpha-ketoglutarate dehydrogenase complex, in the presence of the aminotransferase, to reverse inhibition of malate oxidation by glutamate. Thus, glutamate can react with the aminotransferase in this complex without glutamate inhibiting production of oxalacetate by the malate dehydrogenase in the complex. The conversion of glutamate to alpha-ketoglutarate could also be facilitated because in the trienzyme complex, oxalacetate might be directly transferred from malate dehydrogenase to the aminotransferase. In addition, association of malate dehydrogenase with these other two enzymes enhances malate dehydrogenase activity due to a marked decrease in the Km of malate. The potential ability of the aminotransferase to transfer directly alpha-ketoglutarate to the alpha-ketoglutarate dehydrogenase complex in this multienzyme system plus the ability of succinyl-CoA, a product of this transfer, to inhibit citrate synthase could play a role in preventing alpha-ketoglutarate and citrate from accumulating in high levels. This would maintain the catalytic activity of the multienzyme system because alpha-ketoglutarate and citrate allosterically inhibit malate dehydrogenase and dissociate this enzyme from the multienzyme system. In addition, citrate also competitively inhibits fumarase. Consequently, when the levels of alpha-ketoglutarate and citrate are high and the multienzyme system is not required to convert glutamate to alpha-ketoglutarate, it is inactive. However, control by citrate would be expected to be absent in rapidly dividing tumors which characteristically have low mitochondrial levels of citrate.  相似文献   

18.
  1. Succinic acid is formed in amounts of 0.2–1.7 g/l by fermenting yeasts of the genusSaccharomyces during the exponential growth phase. No differences were observed between the various species, respiratory deficient mutants and wild type strains.
  2. At low glucose concentrations the formation of succinic acid depended on the amount of sugar fermented. However, the nitrogen source was found to be of greater importance than the carbon source.
  3. Of all nitrogen sources, glutamate yielded the highest amounts of succinic acid. Glutamate led to an oxidative and aspartate to a reductive formation of succinic acid.
  4. A reductive formation of succinic acid by the citric acid cycle enzymes was observed with malate. This was partially inhibited by malonate. No evidence was obtained that the glyoxylate cycle is involved in succinic acid formation by yeasts.
  5. Anaerobically grown cells ofSaccharomyces cerevisiae contained α-ketoglutarate dehydrogenase. Its activity was found in the 175000 x g sediment after fractionated centrifugation. The specific activity increased 6-fold after growth on glutamate as compared with cells grown on ammonium sulfate.
  6. The specific activities of malate dehydrogenase, fumarase, succinate dehydrogenase, succinylcoenzymeA synthetase, α-ketoglutarate dehydrogenase and glutamate dehydrogenase (nicotinamide adenine dinucleotide dependent) were determined in yeast cells grown on glutamate or ammonium sulfate. Similar results were obtained with a wild type strain and a respiratory deficient mutant. The latter did not contain succinate dehydrogenase.
  7. In fermenting yeasts succinic acid is mainly formed from glutamate by oxidation.
  相似文献   

19.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

20.
The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttle explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号