首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
固定化酶及双酶共反应   总被引:1,自引:0,他引:1  
周慧  查晓 《生物化学杂志》1990,6(6):566-568
  相似文献   

2.
近年来,生物催化为化学、生物学和生物工程学等领域提供了一种绿色研究工具,其中多酶体系在这些领域中的应用越来越受到关注,其克服了以往单个酶不能满足催化需求的局限性,同时多酶共固定化在级联反应过程中,可增加酶周围的反应物浓度,并将不同酶的催化特性结合起来,能排除干扰因素,从而提高酶的整体催化效率。对多酶共固定化反应体系的研究进展进行了综述,包括多酶反应体系的类别、共固定化技术的特点以及相关应用,并对共固定化多酶反应体系进行了展望。  相似文献   

3.
多酶共固定化的研究进展   总被引:1,自引:0,他引:1  
固定化酶技术是现代生物催化的核心技术。过去几十年里,固定化酶技术的研究主要集中在单酶固定化。近年来,多酶共固定化由于具有可增加反应的局部浓度、提高反应收率等优点而得到研究者的广泛关注。本文根据国内外研究现状并结合本实验研究从多酶非特异性共价共固定化、非特异性非共价共固定化、非共价包埋固定化以及位点特异性固定化四个方面阐述多酶固定化方法的研究进展,并分析和展望了其在工业上的应用前景。  相似文献   

4.
有机介质中的固定化酶反应   总被引:2,自引:0,他引:2  
近年来非水介质中的酶催化反应正获得越来越多的研究和应用。使用有机介质替代传统的水溶液作为酶反应的介质,通常是为了增加疏水性底物或产物的溶解度,或者是为了促使水解反应逆向进行,以便利用水解酶催化合成一些非常有用的化合物。有机介质包括合少量有机助溶剂的均相水溶液系统、水/有机溶剂双相系统,以及含微量水的有机溶剂均相系统等几种类型[1],具体使用时要根据生物催化剂的性质、反应物的溶解性和反应器的型式等特点细加选择。尽管在有机溶剂中可直接使用酶粉作催化剂[k],但是效果并不太好。一方面天然酶在有机溶剂中容易变…  相似文献   

5.
间歇及连续式固定化酶反应生产生物柴油   总被引:16,自引:0,他引:16  
探讨了利用本实验室自制的Candida sp99.125脂肪酶转酯化合成生物柴油的过程。在利用间歇式反应得到最佳反应条件的情况下利用固定床反应器生产生物柴油,经过初步优化的试验结果表明,在采用分级流加甲醇下,生物柴油的转化率可以达到93%左右,并且固定化酶的使用寿命超过480h。  相似文献   

6.
本文研究了用吸附交联技术共固定化蔗糖酶和葡萄糖氧化酶(GOD)的方法,考查了共固定化酶的动力学性质。试验结果表明:与溶液酶相比较,固定化蔗糖酶和GOD的响应滞迟期分别为3分钟和2分钟,4态响应时间增加6分钟和4分钟,Km值增大,pH─活力曲线变宽,最适pH值分别增大0.7和0.64,最适温度则降低7.3℃和16℃。以活性氧化铝作载体,戊二醛作交联剂制备的共固定化蔗糖酶和GOD,其蛋白质固定化率为92.9%,分解葡萄糖的总速度为441.6IU,当蔗糖浓度在0.2%以内时其反应速度与蔗糖浓度呈正相关(r=0.996),使用半衰期1623次,在4℃下保存120天活力残存为83.7%。  相似文献   

7.
PVA共固定化双菌种发酵海藻酒的研究   总被引:4,自引:0,他引:4  
采用PVA为载体共固定化酿酒酵母和产香酵母发酵海藻,酿造海藻酒。对游离细胞与固定化细胞的分批发酵和连续发酵的动力学进行了研究并建立了相应的发酵动力学方程。实验结果表明:酿酒酵母和产香酵母二种菌种菌量的最佳配比为4∶1,发酵温度20℃,共固定化细胞分批发酵和连续发酵凝胶粒的充填系数分别为025和05,游离混合细胞的发酵时间为7d,共固定化细胞连续发酵稀释速率012/h,其发酵时间为05d左右。经160d连续发酵实验,PVA固定化细胞粒子的机械强度良好。  相似文献   

8.
使用LX-1000HFA氨基树脂对N-乙酰神经氨酸醛缩酶(NAL)进行固定化,并对游离酶与固定化酶的酶学性质及稳定性进行了对比研究。结果显示,最佳固定化条件为载体投放量5.0 g,固定化时间12 h,缓冲液浓度1.0 mol/L,pH7.5,温度25℃。在此条件下制备的固定化NAL活力最高,比酶活可达200 U/g湿载体。与游离酶相比,最适反应温度提高了5℃,最适反应pH没有变化,温度和pH耐受性明显提升。同时固定化酶储存稳定性和操作稳定性也显著增强,在4℃条件下储存10 d后其酶活仅损失6%,重复使用10次后仍保持初始酶活的80%。因此,该固定化酶具有良好的温度稳定性、pH稳定性、储存稳定性和操作稳定性,为酶法工业化生产N-乙酰神经氨酸研究提供了理论依据。  相似文献   

9.
固定化酶载体研究进展   总被引:1,自引:0,他引:1  
固定化酶技术的应用提高了酶的稳定性和重复使用性,为酶在工业上的大规模运用提供了条件,其中载体是固定化酶技术的关键环节之一,已成为固定化酶技术目前研究的热点。介绍了介孔材料、纳米材料、磁性材料、天然高分子材料在固定化酶领域的的优缺点、研究现状及其应用情况,综述了载体材料固定化酶研究过程中的分析表征手段,包括形貌分析、结构分析、元素分析、比表面积和孔径分析,并提出了固定化酶载体今后的研究方向,为固定化酶载体进一步的研究和合理利用提供参考。  相似文献   

10.
漆酶是一种多酚氧化酶,可催化氧化多种难降解有机污染物,在环境污染防治领域具有良好的应用前景。总结了植物漆酶、动物漆酶以及微生物漆酶的研究现状,详细讨论了漆酶固定化载体的研究进展,进一步指出了目前漆酶研究存在的问题,并提出未来的研究方向,旨在为漆酶的开发与应用研究提供参考。  相似文献   

11.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

12.
13.
酶的定向固定化方法及其对酶生物活性的影响   总被引:13,自引:0,他引:13  
固定化酶可以提高酶的稳定性,但通常酶通过酶分子上的多个赖氨酸残基随意固定在载体上,这样会使酶的活性显著下降,采用定向固定化酶不仅可以提高酶的稳定性,而且可以保存它的活性。综述了定向固定化酶的几种方法,比较了定向固定化和随意固定化对酶活性的影响。另外,还叙述了酶的活性位点结构变化的自旋共振波谱(EPR)检测。  相似文献   

14.
The stability of immobilized and native Esperase, a commercial serine protease, was studied by incubating the enzymes in four formulations containing the same amount of anionic and non-ionic surfactants. The results show that the activity of the immobilized enzyme is not affected by the presence of detergents while the native enzyme lost 50% of activity after 20 min of incubation in these four formulations. The washing performance of the detergents prepared with the immobilized Esperase was studied on cotton and wool fabric samples stained with human blood and egg yolk, using as control the detergent containing native Esperase. The best stain removal for cotton samples stained with human blood was achieved using the detergent with immobilized Esperase. Several physical tests confirmed that wool keratin was not degraded by the immobilized Esperase, validating the ability to use formulated detergents containing this immobilized enzyme for safe wool domestic washing.  相似文献   

15.
16.
Comparative Immunological Studies of Two Pseudomonas Enzymes   总被引:23,自引:20,他引:3       下载免费PDF全文
Crystalline preparations of muconate lactonizing enzyme and muconolactone isomerase, two inducible enzymes that catalyze successive steps in the catechol branch of the beta-ketoadipate pathway, were used to prepare antisera. Both enzymes were isolated from a strain of Pseudomonas putida biotype A. The antisera did not cross-react with enzymes of the same bacterial strain that catalyze the chemically analogous steps in the protocatechuate branch of the beta-ketoadipate pathway, carboxymuconate lactonizing enzyme and carboxymuconolactone decarboxylase. The antisera gave heterologous cross-reactions of varying intensities with the muconate lactonizing enzymes and muconolactone isomerases of P. putida biotype B, P. aeruginosa, P. stutzeri, and all biotypes of P. fluorescens, but did not cross-react with the isofunctional enzymes of P. acidovorans, of P. multivorans, and of two bacterial species that belong to other genera. The evolutionary and taxonomic implications of the findings are discussed.  相似文献   

17.
Enzymes usually undergo rapid inactivation in the presence of organic media. In some cases, the mechanism is quite simple. For example, when an enzyme, fully dispersed and immobilized inside porous supports, is inactivated, at neutral pH and moderate temperature, in the presence of medium-high concentrations of water-miscible organic cosolvents, the unique cause of inactivation is the interaction of the enzyme with cosolvent molecules and the only inactivating effect is the promotion of conformational changes on enzyme structure.

On this basis, two distinct strategies for stabilization of enzymes against organic solvents are proposed:

a. reduction of the causes of inactivation: generation of hyper-hydrophilic micro-environments having a very open structure and fully surrounding every enzyme molecule;

b. reduction of the effects of inactivation: “rigidification of enzymes” via multipoint covalent immobilization.

By using penicillin G acylase (PGA) as a model enzyme, both strategies have been evaluated and compared. Both stabilizing strategies had significant effects. In this case, hydrophilization of the enzyme nano-environment was found to be more effective than rigidification of the enzyme via multipoint covalent attachment. The combined effect of both stabilizing strategies was also tested: multipoint covalently immobilized enzyme molecules were completely surrounded by hyper-hydrophilic microenvironments. In this way, native PGA that was unstable against organic cosolvents (completely inactivated in less than 3 min in 95% dioxane) was transformed into a very stable immobilized derivative (preserving more than 80% of activity after 40 days under the same conditions).  相似文献   

18.
Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB), a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA), an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1), as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein–protein interactions between enzymes with antagonistic functions.  相似文献   

19.
Isolation and synthesis of isoflavonoids has become a frequent endeavor, due to their interesting biological activities. The introduction of hydroxyl groups into isoflavonoids by the use of enzymes represents an attractive alternative to conventional chemical synthesis. In this study, the capabilities of biphenyl-2,3-dioxygenase (BphA) and biphenyl-2,3-dihydrodiol 2,3-dehydrogenase (BphB) of Burkholderia sp. strain LB400 to biotransform 14 isoflavonoids synthesized in the laboratory were investigated by using recombinant Escherichia coli strains containing plasmid vectors expressing the bphA1A2A3A4 or bphA1A2A3A4B genes of strain LB400. The use of BphA and BphB allowed us to biotransform 7-hydroxy-8-methylisoflavone and 7-hydroxyisoflavone into 7,2′,3′-trihydroxy-8-methylisoflavone and 7,3′,4′-trihydroxyisoflavone, respectively. The compound 2′-fluoro-7-hydroxy-8-methylisoflavone was dihydroxylated by BphA at ortho-fluorinated and meta positions of ring B, with concomitant dehalogenation leading to 7,2′,3′,-trihydroxy-8-methylisoflavone. Daidzein (7,4′-dihydroxyisoflavone) was biotransformed by BphA, generating 7,2′,4′-trihydroxyisoflavone after dehydration. Biotransformation products were analyzed by gas chromatography-mass spectrometry and nuclear magnetic resonance techniques.  相似文献   

20.
甲醛脱氢酶(formaldehyde dehydrogenase,ADH)与甲酸脱氢酶(formate dehydrogenase,FDH)是甲醛氧化途径的两个关键酶.恶臭假单胞菌(Pseudomonas putida)的PADH是一种不依赖谷胱甘肽可以把游离甲醛直接氧化为甲酸的脱氢酶,博伊丁假丝酵母菌(Candida boidinii)的FDH在有NAD+存在时可以把甲酸氧化为二氧化碳.以基因组DNA为模板用PCR方法,从P.putida中扩增出PADH基因的编码区(padh),从C.boidinii中扩增出FDH的编码区(fdh),然后亚克隆到pET-28a(+)中分别构建这两个基因的原核表达载体pET-28a-padh和pET-28a-fdh,转化大肠杆菌,利用IPTG诱导重组蛋白PADH和FDH的表达.通过优化条件使重组蛋白的表达量占菌体总蛋白的70%以上,通过亲和层析法纯化出可溶性PADH和FDH重组蛋白.对重组蛋白的生化特性分析结果表明:PADH在最适反应温度50℃的活性为1.95 U/mg;FDH在最适反应温度40℃的活性为0.376 U/mg.所表达的重组蛋白与之前报道过的相比,具有更好的热稳定性和更广的温度适应范围.将PADH、FDH两个重组蛋白及辅因子NAD+固定到聚丙烯酰胺载体基质上,对固定化酶甲醛吸收效果的初步分析结果显示固定化酶对空气中的甲醛有一定的吸收效果,说明这两种酶被固定后具有开发成治理甲醛污染环保产品的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号