首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inability of established antigen-specific murine T lymphocyte clones to recirculate well in vivo has been attributed to loss of the surface glycoprotein gp90MEL-14, which is important for specific adherence to post-capillary high endothelial venules in peripheral lymph nodes (LN). Defective recirculation of clones may contribute to inefficient adoptive immunotherapy when compared with fresh immune spleen or LN populations. To optimize models of adoptive immunotherapy, we sought to improve recirculation of Thy-1.2+, L3T4+ clones by inducing reexpression of MEL-14 antigen (gp90MEL-14). Clones were analyzed after treatment with differentiating agents, incubation in the presence or absence of recombinant interleukin 2 (rIL 2), coincubation in vitro with nonirradiated Thy-1.1 LN or thymus cells, or adoptive transfer into Thy-1.1 hosts. We were unable to demonstrate induction of gp90MEL-14 in any case. However, although clones remained MEL-14 negative, they were able to disseminate widely after subcutaneous adoptive transfer in the presence of clone-specific antigen and rIL 2 into Thy-1.1 mice pretreated with cyclophosphamide. Withdrawal of exogenous rIL 2 was associated with rapid disappearance of clones from all sites. We conclude that murine T cell clones undergo a step in terminal differentiation that precludes surface expression of gp90MEL-14 and that these clones would be unlikely to provide a source of long-lived recirculating memory T lymphocytes. However, under appropriate circumstances it is possible for antigen-specific clones to disseminate widely among host LN and mediate short-term immune responses.  相似文献   

2.
Down-regulation of homing receptors after T cell activation   总被引:32,自引:0,他引:32  
The specific pattern of lymphocyte localization and recirculation is important for the induction and expression of normal immune responses. In order to home to lymph nodes (LN), lymphocytes must first recognize and bind to specific high endothelial venules (HEV) in the LN. Binding to LN HEV is mediated by specific lymphocyte receptors, termed homing receptors, which are recognized by the mAb MEL-14. We examined the changes that occur in homing receptor expression after activation of murine T lymphocytes in vitro. Cells activated in MLC or by Con A undergo a 75% loss in their ability to recognize HEV, as demonstrated by a decrease in binding to HEV in vitro. Large, activated cells isolated from a primary MLC by elutriator centrifugation were completely unable to recognize HEV, whereas the small cells in the same culture continued to bind well. Flow cytometric analysis with MEL-14 showed that the activated fraction had lost expression of gp90MEL-14, the homing receptor Ag, whereas the inactivated cells remained MEL-14+. Concomitant with the loss of homing receptor expression, most of the activated cells became strongly peanut agglutinin (PNA)-positive, demonstrating a marked change in surface glycosylation. Thus, these MLC consist of two major populations of T cells--small, inactivated lymphocytes that are MEL-14+PNAlo and large, activated blast cells that are MEL-14-PNAhi. Purified MEL-14+ T cells activated by Con A gave rise to MEL-14- progeny, showing that gp90MEL-14 is lost from gp90MEL-14-positive precursors, rather than from the selective growth of MEL-14- cells. Furthermore, the loss of Ag expression on at least some activated cells is reversible in resting culture, with almost half of the cells reverting to MEL-14+ after the cessation of stimulation. These experiments show that activation of T cells results in down-regulation of surface homing receptors, resulting in their inability to recognize and bind to the endothelial surface of HEV. This suggests that the activation of T cells in vivo would result in a dramatic and physiologically significant change in their migration and localization properties which would be important during a normal immune response.  相似文献   

3.
Lymphocyte entry into lymph nodes and Peyer's patches is initiated by the adhesion of the lymphocytes to specialized postcapillary high endothelial venules (HEV). The binding of lymphocytes to lymph node HEV is mediated by the cell surface receptor gp90MEL-14 (gp90). Previous work has shown that gp90 is down-regulated over a period of days after mitogenic or mixed lymphocyte reaction stimulation of T lymphocytes. In our study, it is shown that stimulation of lymphocytes with activators of protein kinase C (PKC), such as PMA or 1-oleoyl 2-acetyl-glycerol, results in the nearly complete loss of surface expression of gp90 within 1 h. Pretreatment of the cells with H-7 or staurosporine, PKC inhibitors, but not HA1004, a general protein kinase inhibitor, prevents the loss of gp90MEL-14. Within 15 min of stimulation of PKC, a novel form of gp90 can be immunoprecipitated from the supernatant of stimulated cells. Upon deglycosylation, this soluble gp90 polypeptide is shown to be 12 kDa smaller than the cell surface protein. Peptide mapping showed identical patterns for surface and soluble receptor, confirming that the soluble Ag is related to the cell membrane protein. Together, these experiments suggest that activation of PKC results in the proteolytic cleavage of gp90MEL-14, resulting in receptor shedding and the inability of the lymphocytes to adhere to HEV endothelium. Furthermore, because supernatant from unstimulated, normal lymphocytes also contains a small amount of the low Mr form of gp90, cell surface proteolysis may be part of the normal turnover of this receptor glycoprotein. These experiments suggest that PKC may play a role in the regulation of lymphocyte traffic to lymphoid tissues.  相似文献   

4.
Schistosoma mansoni eggs are potent inducers of biased Th2-like immune responses. Using a model system where mice are immunized with isolated schistosome eggs, we demonstrate that CD44 expression, up-regulation of which has been linked to Th cell development, is increased on Th2 cells. We also investigate the functional properties of CD44-lo Th cells recovered from the overtly Th2 environment constituted by lymph nodes draining sites of egg deposition. Production of high levels of IL-4, IL-5, and IL-10 by Th cells responding to egg Ag is shown to be the property of a subpopulation expressing CD44-hi. This population of Th cells cosegregates with a blasting subpopulation expressing more IL-4R (but similar amounts of IL-2R) than Th cells from normal mice. These results indicate that mature Th2 cells responding to schistosome eggs are CD44-hi and suggest that they use IL-4 as a growth factor. In contrast, CD44-lo cells sorted from lymph node populations responding to eggs are able to produce small amounts of IL-4 and IL-2, but no IL-5 or IL-10. This is surprising, because low expression of CD44 is considered a characteristic of Th cell naivite and concomitant ability to produce only IL-2. Thus, in lymph nodes responding to schistosome eggs, potential for Th2 subset differentiation is evident within the CD44-lo precursor Th subpopulation.  相似文献   

5.
The CD11/18 (LFA-1, Mac-1) molecules participate in neutrophil adhesion to cultured endothelium in vitro and are critical for effective neutrophil localization into inflamed tissues in vivo. More recently, the MEL-14 Ag, which was first defined as a lymphocyte homing receptor, has also been implicated in inflammatory neutrophil extravasation. Here we compare the regulation and function of these adhesion molecules on neutrophils during the in vivo inflammatory response. The MEL-14 Ag is expressed at high levels on bone marrow and peripheral blood neutrophils, but is lost on neutrophils isolated from the thioglycollate-inflamed peritoneal cavity. In contrast, Mac-1 is up-regulated on inflammatory neutrophils and little change is seen in the level of LFA-1 expression. In vitro activation of bone marrow neutrophils with PMA or leukotriene B4 results in a dose dependent increase in Mac-1 and decrease in MEL-14 Ag expression within 1 h after treatment, thus reflecting what is found during inflammation in vivo. Neutrophils activated in vitro or in vivo (MEL-14Low, Mac-1Hi) do not home to inflammatory sites in vivo, correlating with the loss of the MEL-14 Ag and the increased Mac-1 expression. Anti-LFA-1, anti-Mac-1, or MEL-14 antibody given i.v. suppress neutrophil accumulation within the inflamed peritoneum (38%, 30%, and 37% of medium control, respectively) without affecting the levels of circulating neutrophils. However, when FITC-labeled cells are precoated with the mAb and injected i.v., only MEL-14 inhibits extravasation into the inflamed peritoneum (25% of medium control). Finally, in ex vivo adhesion assays of neutrophil binding to high endothelial venules in inflamed-lymph node frozen sections MEL-14 inhibits greater than 90%. anti-LFA-1 20 to 30% and anti-Mac-1 less than 10% of the binding of bone marrow neutrophils to inflamed-lymph node high endothelial venules. These results confirm that both the MEL-14 antigen and Mac-1/LFA-1 are important in neutrophil localization to inflamed sites in vivo, but suggest that their roles in endothelial cell interactions are distinct.  相似文献   

6.
In a variety of lymphocyte interactions, lymphocyte function-associated antigen-1 (LFA-1) plays an important role as an accessory mechanism mediating cell adhesion. We tested the possibility that LFA-1 could also be involved in the specific binding of lymphocytes to high endothelial venules (HEV) during homing. Antibodies against LFA-1 but not against various other cell surface molecules (except the putative gp90 homing receptor defined by the MEL-14 antibody) were found to inhibit in vitro adherence of lymphocytes to HEV in frozen sections of lymph nodes. Binding of T cell lines to HEV was also inhibited by anti-LFA-1 antibody. Using sublines selected for differential expression of the MEL-14 antigen, MEL-14 high cells (which bind well to HEV) were less susceptible to inhibition by anti-LFA-1 than poor binders with low levels of the homing receptor, supporting the model of LFA-1 being an accessory mechanism strengthening weak interactions between cells. Parallel results were found in vivo where anti-LFA-1 antibodies reduced the migration of normal lymphocytes into lymph nodes and Peyer's patches by 40 to 60%. Localization in the lung, especially of activated lymphocytes, was also impaired, although to a lesser extent. These findings suggest that LFA-1 plays an accessory role in cellular interactions relevant for lymphocyte migration.  相似文献   

7.
We have characterized the surface phenotype and function of long-lived, Ag-specific memory CD4+ T cells generated in vivo by immunization with keyhole limpet hemocyanin (KLH). CD4+ T cells from the spleens of mice primed more than 2 mo previously with KLH, produced high levels of IL-2 and IL-3, and low levels of IL-4 and IFN-gamma in response to in vitro restimulation with specific Ag. The KLH-primed T cells mediated carrier-specific helper activity for the antibody production by NIP-primed B cells in secondary in vitro responses to NIP-KLH. Subsets of CD4+ T cells from KLH-primed mice were isolated on the basis of surface CD45RB (23G2) by magnetic separation and were examined for functional capacity in several assays of Ag-specific recall. Virtually all of the secretion of IL-2, IL-3, IL-4, and IFN-gamma in response to restimulation with Ag in vitro was associated with, and considerably enriched in, the CD45RB- subset of CD4+ T cells. Similarly, carrier-specific helper function and Ag-specific proliferation in vitro were also confined to the CD45RB-, CD4+ subset of T cells, confirming the previous association of this surface phenotype with memory Th cell activity. We also examined expression of the lymphocyte homing receptor, MEL-14 (gp90MEL), which is required for lymphocyte extravasation to peripheral lymph nodes and is present in high levels on naive T cells. MEL-14 positive and negative subsets of CD4+ T cells from long term KLH-primed mice were evaluated for Ag-specific memory function in terms of lymphokine production, Ag-induced proliferation, and helper activity. Each of these functions was associated exclusively with the MEL-14- subset of CD4+ T cells, which exhibited responses comparable to the CD45RB- subset. These data indicate that memory Th cell function in the spleen is contained within the MEL-14-, CD45RB- subset of CD4+ T cells and suggest that memory helper cells may have different patterns of recirculation from naive T cells.  相似文献   

8.
There is increasing evidence that cytokines such as granulocyte-macrophage (GM)-CSF can profoundly affect the adhesion, aggregation, and mobility of neutrophils both in vitro and in vivo. However, the mechanisms whereby these factors might alter the adhesive properties of neutrophils are incompletely understood. A new family of cellular adhesion molecules has recently been identified by cDNA cloning. The members of this family include human leukocyte adhesion molecule-1 (LAM-1), the human endothelial-leukocyte adhesion molecule, and the mouse leukocyte homing receptor for high endothelial venules, MEL-14. LAM-1 is the human homologue of murine MEL-14, and is believed to mediate binding of leukocytes to human high endothelial venules. LAM-1 can be identified by mAb TQ-1, Leu 8, or anti-LAM1.1. The expression and regulation of LAM-1 on granulocytes, monocytes, and their precursors was investigated using flow cytometry and the anti-LAM-1.1 mAb. Neutrophils, eosinophils, monocytes, marrow myeloid cells, granulocyte/macrophage colony-forming unit, and burst-forming unit for erythroid cells were LAM-1+ by flow microfluorimetry. The regulation of LAM-1 expression was tested by treating various cell populations with cytokines or other stimuli for 0-90 min. Exposure of neutrophils, monocytes, and marrow myeloid cells to GM-CSF induced rapid and complete loss of LAM-1 from the cell surface, but had no effect on LAM-1 expression by lymphocytes. The loss of LAM-1 was temporally correlated with up-regulation of CD11b (Mo1), an adhesion molecule involved in neutrophil aggregation. Several other factors known to activate neutrophils also caused down-regulation of LAM-1 and up-regulation of CD11b, including TNF, FMLP, and leukotriene B4. Interestingly, granulocyte-CSF and IFN-gamma had minimal effects on neutrophil LAM-1 expression. Similar results were observed on monocytes and myeloid precursor cells. Thus, exposure of neutrophils to GM-CSF results in a profound change in surface expression of adhesion molecules, with coordinated up-regulation of CD11b and down-regulation of LAM-1. These changes in adhesion proteins are likely to alter aggregation and mobility of both mature myeloid cells and their precursors in patients receiving certain types of cytokine therapy.  相似文献   

9.
The mouse lymph node specific homing receptor gp90MEL-14 is a 95-kDa molecular mass ubiquitinated cell surface molecule involved in the binding of lymphocytes to high endothelial venules in peripheral lymph nodes. The molecule is thought to consist of a core protein to which ubiquitin side chains are covalently bound. Recently we cloned the cDNA encoding the core protein; this cDNA clone encodes for a polypeptide with an estimated molecular mass of 37 kDa. We have studied the biosynthesis of gp90MEL-14 in an effort to explain the difference in molecular mass between the core protein and the 95-kDa mature molecule. Pulse labeling experiments show a rapid synthesis of a 70-kDa precursor form that contains high-mannose N-linked oligosaccharides. On processing of the high-mannose oligosaccharides into complex N-linked oligosaccharides, the precursor matures in a single step into the 95-kDa form. Experiments using deglycosylating enzymes and inhibitors of N-linked glycosylation demonstrate that the molecular mass of deglycosylated gp90MEL-14 is 45 kDa; extensive N-linked glycosylation is responsible for the difference in molecular mass with the mature 95-kDa form. The core protein molecular weight of in vitro transcribed and translated gp90MEL-14 cDNA is consistent with the estimated molecular mass of 37 kDa, calculated from the cDNA sequence of the core protein, and 8 to 10 kDa less than the protein molecular mass of gp90MEL-14 translated in vivo in the presence of tunicamycin (45 kDa). Inasmuch as we have ruled out glycosylation as accounting for this discrepancy, this is consistent with the addition of one ubiquitin moiety to the core protein during biosynthesis. Limited proteolysis confirms the similarity between in vitro transcribed gp90MEL-14 cDNA and the tunicamycin form of gp90MEL-14.  相似文献   

10.
A variety of adhesion molecules regulate the traffic and tissue localization of lymphocytes in vivo by mediating their binding to vascular endothelial cells. The homing receptor gp90MEL-14 (gp90), also known as LECAM-1 or L-selectin, mediates the adhesion of lymphocytes to specialized high endothelial venules in lymph nodes (LN) and is the primary molecule regulating lymphocyte recirculation and homing to LN, whereas other adhesion molecules have a major role in the localization of lymphocytes in inflammatory sites. We used four-color flow cytometric analysis to examine the regulation of adhesion receptor expression on LN CD8 T cells responding to skin allografts in vivo. In normal mice, greater than 95% of LN CD8 T cells are gp90+, being either gp90+Pgp1- (Population (Pop.) 1 or gp90+Pgp-1+ (Pop.2). Allografting induces the down-regulation of gp90 and up-regulation of Pgp-1 on a subset of cells, resulting in the appearance of CD8+gp90-Pgp-1hi (Pop. 3) cells. Pop. 3 cells also express high levels of LFA-1, ICAM-1, and ICAM-2, and a subset of them are VLA-4 alpha-positive. Purified Pop. 3 cells have potent cytolytic activity directed against donor alloantigen, whereas no such activity is present in Pop. 1 or 2 cells. Correlating with this is the high granzyme activity in Pop. 3 cells. In addition, Pop. 3 lymphocytes, but not Pop. 1 or 2, secrete a large amount of IFN-gamma in response to Ag. Finally, the CD8 T cells that infiltrate sponge matrix allografts are markedly enriched for the Pop. 3 subset. These results show that, during the immune response to alloantigen in vivo, a small subset of CD8 T cells down-regulates the LN homing receptor while increasing the expression of other adhesion molecules, as they differentiate into highly active cytolytic T lymphocytes. Thus, the differential regulation of LN homing receptors and receptors for peripheral vascular endothelium provides a mechanism that would redirect the traffic of activated effector cells away from lymphoid tissue and to sites of Ag deposition, where they would participate in the inflammatory response.  相似文献   

11.
Homing of recirculating lymphocytes from the blood into the lymphoid tissues is mediated by 90-kDa homing receptors on the lymphocyte cell surface, allowing selective binding to specialized endothelium lining high endothelial venules. This study describes two novel mAb, NKI-P1 and NKI-P2, directed against functional epitopes of a human lymphocyte homing receptor, gp90. Biochemical studies demonstrated that these antibodies recognize a 90-kDa glycoprotein which is similar to the Ag recognized by the mAb Hermes-1. This notion was confirmed by immunohistochemical studies showing identical reaction patterns. Furthermore, it was observed that NKI-P1 and NKI-P2 blocked adhesion of lymphocytes to high endothelial venules. Immunohistochemical, immunofluorescence, and immunoprecipitation studies revealed that gp90 is widely expressed on hemopoietic cells including lymphocytes, macrophages/dendritic cells, myeloid cells, and erythrocytes. The gp90 is also expressed on a number of nonhemopoietic cells such as endothelial cells, certain epithelial cells, and fibroblasts. In addition to its expression on normal cells, gp90 is present on a spectrum of tumor cell lines of lymphoid, monocytic, epithelial, glial, and melanocytic origin. In addition to the 90-kDa product, the antibodies immunoprecipitate several polypeptides in the range of 120 to 200 kDa. Interestingly, it was observed that certain mamma tumor cell-line cells lack the 90-kDa polypeptide indicating the heterogeneous expression of the molecules recognized by the antibodies. These results indicate that the 90-kDa glycoprotein homologues of the Hermes-1 human lymphocyte homing receptor are expressed on hemopoietic tissues as well as on a number of nonhemopoietic tissues and tumor cell lines. Although the function of these molecules in nonlymphoid cells is presently unknown, they might play a role in cell-cell or cell-matrix adhesion.  相似文献   

12.
The nuclear pore complex (NPC) is the only known gateway for nucleocytoplasmic traffic. The nuclear pore membrane glycoprotein 210 (POM210/gp210) is considered to be important for the assembly and structure of pore complexes in metazoan cells. However, here we demonstrate cell-type specific expression of the gp210 protein during mouse organogenesis. As shown previously for its mRNA, distinct expression of the gp210 was seen in developing epithelia and some other cell types, whereas it was undetectable in nuclei of several other embryonic tissue compartments. In sharp contrast, monoclonal antibody 414 recognizing four non-membrane nucleoporins, stained the nuclear envelope of all cell types. In four cultured mouse cell lines, gp210 mRNA and protein were below detection levels, in contrast to some other nucleoporins tested. Distinct expression of gp210 mRNA and protein was seen in cultured mouse embryonic stem (ES) cells. These findings support the view of cell-type specific NPCs in metazoans and that the gp210 gene is regulated by cell-type specific control elements not shared by other nucleoporins. Although it cannot be excluded that very low expression levels of gp210 are sufficient to allow attachment of NPCs, a more likely alternative is that it has cell-type specific functions.  相似文献   

13.
Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an approximately 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of approximately 90 kD (designated as Sgp90) is also identified.  相似文献   

14.
15.
To define further the molecular basis for abnormal interactions of cord blood or neonatal neutrophils with endothelial cells in vitro, we studied neutrophil adhesion and migration under experimental conditions specifically designed to evaluate CD18-independent mechanisms. Unstimulated cord blood neutrophils of healthy term neonates demonstrated significantly diminished adhesion to IL-1-stimulated endothelial cell monolayers under conditions of shear stress (congruent to 1.85 dynes/cm2); overall levels of migration by neonatal cells were also significantly diminished, although the adherent subpopulation of these cells migrated relatively normally. A mAb (DREG-56) against the human homologue of the murine MEL-14 antigen (termed lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 (LECAM-1), a member of the LEC-CAM family of adhesion molecules) markedly inhibited adhesion of healthy adult but not cord blood neutrophils. In additional assessments of endothelial cell adhesion or migration in the absence of shear forces, cord blood neutrophils demonstrated significantly diminished values compared to adult controls. Moreover, mAb DREG-56 significantly diminished adhesion of healthy adult but not cord blood suspensions in the presence or absence of the anti-CD18 mAb R15.7. Immunofluorescence assessments of unstimulated cord blood neutrophils or neutrophils of neonates 12 to 48 h of age showed dramatically diminished levels of surface LECAM-1 compared to adult neutrophils. Chemotactic stimuli (FMLP, 10 nM, 15 min) consistently "down-regulated" surface LECAM-1 on adult neutrophils to levels approximately 10% of unstimulated suspensions and comparable to those of most unstimulated neonatal suspensions. Moreover, FMLP stimuli elicited little or no down-regulation of LECAM-1 on neonatal cells. In comparative studies, endothelial cell adhesion of unstimulated cord blood or adult control neutrophils (assessed under conditions of flow) was directly related to levels of neutrophil surface LECAM-1. Although FMLP stimulation significantly diminished both adhesion and LECAM-1 surface levels of adult control cells, the adhesion and LECAM-1 expression observed with cord blood cells were not significantly influenced by this stimulus. The mechanisms underlying diminished LECAM-1 expression and LECAM-1-dependent adhesion of neonatal neutrophils and the physiologic significance of these abnormalities deserve investigation.  相似文献   

16.
17.
Using a subtraction cloning approach, we have isolated a set of cDNA clones from mouse neural precursor cells whose respective mRNA levels are down-regulated during the development of mouse brain. Single stranded DNA prepared from neuronal precursor cell cDNA library in lambda Zap vector was subtracted with poly (A)+ RNA prepared from postnatal and adult mouse brain to obtain several clones which show developmental down-regulation of expression. Their patterns of expression indicate that these genes may play important roles during the embryonic development and differentiation of central nervous system.  相似文献   

18.
19.
The murine B cell FcR for IgG (Fc gamma RII) is a membrane glycoprotein reported to mediate inhibition of B cell activation and differentiation. We show that IL-4 inhibits the enhanced expression of Fc gamma RII by LPS-stimulated B cells. This activity is completely reversed by anti-IL-4 mAb and is specific, in that multiple other lymphokines tested do not exert a similar effect. This effect of IL-4 is apparent by day 1 of culture, although maximal inhibition occurs on day 4 at a concentration of 500 U/ml. The IL-4-induced inhibition of enhanced Fc gamma RII expression by LPS stimulation observed on day 4 of culture is associated with a significant reduction in the steady state level of Fc gamma RII beta gene-specific mRNA. IFN-gamma which inhibits many of the effects of IL-4 on B cells, does not reverse the IL-4-induced inhibition of Fc gamma RII membrane expression nor the levels of beta gene-specific mRNA. Fc gamma RII expression is significantly increased in B cells stimulated with antigen-specific, CD4+ T cell clones of the Th1 type (i.e., IL-2 and IFN-gamma-producing). By contrast, three different Th2 clones (i.e., IL-4-producing) fail to stimulate an increase in Fc gamma RII levels. Anti-IL-4 mAb significantly enhanced Fc gamma RII expression by Th2-stimulated B cells indicating that IL-4 was the active, inhibitory, substance produced by the Th2 cells. Supernatants from stimulated Th2 clones inhibited the enhanced expression of Fc gamma RII by LPS-stimulated B cells and this activity was completely reversed by anti-IL-4 mAb. By contrast, supernatants from stimulated Th1 clones further enhanced Fc gamma RII expression by LPS-stimulated B cells. The differential regulation of B cell Fc gamma RII expression by Th subsets may play an important role in the regulation of humoral immunity by altering the sensitivity of B cells to IgG immune complex-mediated inhibition of B cell activation and differentiation in vivo.  相似文献   

20.
CD40 signaling activates CD11a/CD18 (LFA-1)-mediated adhesion in B cells.   总被引:4,自引:0,他引:4  
Cell-cell adhesion events play critical roles in the sequential migrations and multiple specific cell-cell interactions which B cells undergo during normal development and function. We have observed that mAb to several B cell-associated molecules, including mAb to CD19, CD37, and CD40, induce homotypic aggregation of freshly isolated human B cells. The aggregation of B cells induced by CD40 mAb was due to activation of a cell-cell adhesion system, and not due to agglutination by mAb, because 1) in addition to being energy dependent and cation dependent, the aggregation was blocked by inhibitors of messenger RNA and protein synthesis; and 2) a mouse B cell line transformed with intact human CD40 aggregated in response to CD40 mAb, whereas a line expressing surface CD40, but lacking the cytoplasmic tail and previously shown incapable of transmitting a signal from the cell surface, did not aggregate. The aggregation, although of slow onset, was persistent and of high avidity. In addition, CD40 mAb induced increased surface expression of intercellular adhesion molecule-1 (CD54), a ligand for CD11a/CD18 (LFA-1), and CD18 mAb blocked aggregation. CD40 mAb also augmented the ability of dense B cells to stimulate the proliferation of allogeneic T cells via a CD18-dependent process. We conclude that signaling through CD40, elicited by cross-linking the CD40 protein on the cell surface, activates the CD18/intercellular adhesion molecule adhesion system; in addition, CD40 cross-linking may activate a second adhesion system since CD40 mAb induced aggregation of the B cell line Ramos, which does not express surface CD18. B cell adhesion may be triggered by signaling through multiple surface proteins, thereby lending specificity of activation to adhesion systems which are broadly expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号