首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on lipid peroxidation, 3H-Me-glucose (3H-Me-glu), and 14C-dehydroascorbic acid (14C-DHA) uptakes were studied in adipose tissue of male guinea pig. Under in vitro test conditions, using isolated adipose tissue in a culture medium (explant culture), TCDD reduced the uptake of 3H-Me-glu and 14C-DHA in a dose- and time-dependent fashion. The IC50 values of TCDD's action were 0.04 and 2 nM on 14C-DHA and 3H-Me-glu uptakes, respectively. TCDD (10 nM) also suppressed glucose transporting activity within 15 minutes in explant-cultured adipocytes. Cytochalasin B (CB) and nonlabeled D-glucose inhibited 14C-DHA uptake also in a dose-dependent manner. In addition, TCDD was found to induce lipid peroxidation in ex-plant-cultured adipose tissue. This effect of TCDD was similar to that of a typical lipid peroxidation inducer, CCl4, and it was dose and time dependent. TCDD caused a statistically significant rise in lipid peroxidation at a concentration as low as 0.1 nM after 60 minutes of treatment in explant culture. Unexpectedly, the Ah receptor partial antagonists, 4,7-phenanthroline and α-naphthoflavone, did not fully antagonize TCDD-induced lipid peroxidation in explant-cultured adipocytes. In vivo treatment of TCDD also induced lipid peroxidation. Among seven organs of male guinea pig tested, the levels of lipid peroxidation in adipose tissue and in liver increased at 1 and 40 days following a single i.p. dose of TCDD (1 μg/kg). The results of an in vivo time-course study indicated that such an effect of TCDD was most pronounced after 40 days of treatment. Finally, we have tested the protective role of some antioxidants on TCDD-induced lipid peroxidation under explant-culture conditions. The results indicated that DHA, but not ascorbic acid, could completely abolish TCDD-induced lipid peroxidation. The protective effect of DHA on TCDD-induced lipid peroxidation was stronger than that of α-tocopherol and uric acid, and this effect was blocked by CB. We conclude from these studies that TCDD acts in this guinea pig tissue through two different routes: one is the Ah receptor-dependent route causing the reduction of the level of glucose transporters and subsequent decrease of cellular uptake of DHA and the other, the Ah receptor-independent route causing the overall lipid peroxidation. Nevertheless, it appears likely that both events are antagonized by DHA. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 269–278, 1997.  相似文献   

2.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was injected into chicken eggs prior to incubation to study possible mechanisms of toxicity and teratogenicity. One of the suggested mechanisms of teratogenicity is oxidative stress. Eggs were injected simultaneously with TCDD and cotreatment compounds in an attempt to prevent oxidative stress or to block cytochrome P450 activity. Indicators of oxidative stress were assessed in livers and brains of hatchling chicks. In ovo, exposure to TCDD caused significant effects on indicators of oxidative stress in liver, but not in the brain of the hatchling chicks. TCDD did not significantly affect superoxide production. In liver, TCDD treatment caused a decrease in glutathione content and glutathione peroxidase activity and an increase in the ratio of oxidized to reduced glutathione. TCDD increased the susceptibility to lipid peroxidation and oxidative DNA damage in liver. Administration of the antioxidants vitamin E and vitamin A provided partial protection against TCDD-induced oxidative stress in liver. The lack of effect of TCDD in chicken brain could be due to the low cytochrome P4501A activity in this tissue and little accumulation of TCDD in brain compared to liver. Phenytoin, a known inducer of oxidative stress, caused a decrease in glutathione content and an increase in susceptibility to lipid peroxidation in both liver and brain and increased oxidative DNA damage in brain. Responsiveness varied among individual animals, but measures of the oxidative stress were correlated.  相似文献   

3.
The induction of oxidative stress by TCDD in various brain regions of rats has been investigated after subchronic exposure. TCDD was administered by gavage to female Sprague-Dawley rats at daily doses of 0, 10, 22, and 46 ng/kg for 13 weeks. The brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs); the production of superoxide anion (SA) and lipid peroxides and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were determined in those regions. TCDD caused dose-dependent increases in the production of SA and lipid peroxidation in Cc and H and those were associated with dose-dependent suppressions of SOD. While a TCDD dose of 10 ng/kg/d resulted in significant increases in catalase and GSH-Px activities in Cc and H, doses of 22 and 46 ng/kg/d resulted in dose-dependent suppressions of these two enzymes in the same regions. In the C and Bs, TCDD treatment did not result in significant production of SA and lipid peroxidation but it resulted in dose-dependent increases in the activities of various antioxidant enzymes. These results suggest that Cc and H are vulnerable to TCDD-induced oxidative stress after subchronic exposure, and that C and Bs are protected against that effect.  相似文献   

4.
2,3,7,8‐Tetrachlorodibenzo‐p‐dioxin (TCDD), an endocrine disruptor, causes epididymal toxicity by inducing oxidative stress. Glucocorticoids have been found to influence TCDD action in vitro and in vivo. The present experiments were set up to analyze the effects of TCDD on rat epididymal antioxidant system under the influence of increased corticosterone level. Adult male Wistar/NIN rats (70–80 days old) numbering 24 (six per group) were used in the study. Corticosterone (3 mg/kg body weight per day) or TCDD (100 ng/kg body weight per day) were administered or coadministered to rats for 15 days. Treatment with corticosterone or TCDD decreased the levels of serum testosterone significantly. In caput, corpus, and cauda fractions, administration of corticosterone or TCDD increased the levels of lipid peroxidation and hydrogen peroxide and decreased the activities of superoxide dismutase and catalase significantly. Coadministration of corticosterone and TCDD to rats decreased the levels of serum testosterone significantly as compared with rats treated with TCDD alone. In caput, corpus, and cauda fractions, the levels of lipid peroxidation and hydrogen peroxide were increased and activities of superoxide dismutase and catalase were decreased significantly as compared with rats treated with TCDD alone. Stress, characterized by increased glucocorticoid levels and activity, may enhance TCDD‐induced epididymal toxicity. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:242–249, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20332  相似文献   

5.
Female Fischer 344 rats were given single oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 10, 50 or 100 μg/kg, and sacrificed 1, 3, 10, 14 or 21 days later. The fatty livers caused by a sub-lethal dose of TCDD involved a temporary increase in triglyceride and free fatty acid levels, with a persistent decrease in levels of sterol esters. In contrast, the fatty livers resulting from a lethal dose of TCDD involved a large increase in cholesterol esters and free fatty acids, with little change in triglyceride levels. These changes appeared to result in part from damage sustained by lysosomes. TCDD also altered the lipoprotein composition of the serum, the fatty acid composition of various lipid classes in liver and serum, and the ultrastructure of the liver (formation of myeloid bodies). A rapid, dose-dependent effect of TCDD, was the elevation of levels of organic-soluble fluorescent pigment in the heart. This pigment was found to match a previously characterized fraction of lipofuscins in fluorescence spectrum and chromatographic properties. The relationship of these observations to a possible mechanism of toxicity for TCDD involving radical-induced lipid peroxidation is discussed.  相似文献   

6.
The effects of ellagic acid (EA) and vitamin E succinate (VES) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative stress in different brain regions of rats have been studied after subchronic exposure to the compounds. TCDD was administered to groups of rats at a dose of 46 ng/kg/day for 90 days. EA and VES were administered to groups of rats, either separately or simultaneously with TCDD, every other day for 90 days. At the end of the treatment period, animals were sacrificed and brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs), and were assayed for production of superoxide anion (SA), lipid peroxidation (LP), and DNA single-strand breaks (SSBs). While TCDD administration to rats resulted in significant production of SA, LP, and DNA SSBs in Cc and H, simultaneous administration of VES or EA with the xenobiotics resulted in significant protection against those effects. The results also indicate that VES provided a better protyection against TCDD-induced effects in brains when compared with EA.  相似文献   

7.
Both 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and carbon tetrachloride (CCl4) have conspicuous effects on lipid metabolism in rat liver. Although it is generally accepted that CCl4 administration leads to hepatic lipid peroxidation in vivo, conflicting reports from different laboratories make it unclear whether or not lipid peroxidation is involved in the mechanism of toxicity of TCDD. The present study involved pretreating F344 rats with CCl4 or TCDD, then at predetermined times thereafter, giving [U-14C]linoleic acid. A variety of compound classes were monitored in extracts of liver taken 30 min after the label was given. A previously unreported effect of CCl4 was a conspicuous increase in turnover of 1,2-diglycerides. That CCl4 did cause lipid peroxidation was evident from the presence of allylic hydroxyacids not seen in vehicle-treated controls, greatly increased radioactivity in protein-bound material, and decreased levels of arachidonate without decreased synthesis from linolate. Where effects of TCDD pretreatment could be seen, they were much less than the corresponding effects of CCl4. No allylic hydroxyacids were detected in livers of TCDD-treated rats. The concentration of arachidonate was not reduced, and elongation of linolate was not stimulated, indicating that TCDD did not cause extensive-but-repaired peroxidation. It is concluded that while TCDD may slightly increase hepatic lipid peroxidation in rats in vivo, the extent of such stimulation appears to be too slight to account for the toxicity of TCDD.  相似文献   

8.
It has been reported that glutamate decreased the intracellular glutathione (GSH) concentration and thereby induced cell death in C6 rat glioma cells. Polyunsaturated fatty acids such as arachidonic acid, gamma-linolenic acid, and linoleic acid enhanced lipid peroxidation promoting 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation under the glutamate-induced GSH-depletion. The enhancement of lipid peroxidation by polyunsaturated fatty acids was species-dependent. Some antioxidants capable of scavenging oxygen and lipid radicals and some iron or copper scavengers inhibited both the lipid peroxidation and the 8-OH-dG formation, consequently protecting against cell death induced by glutamate-induced GSH depletion. These results suggest that GSH depletion caused by glutamate induces lipid peroxidation and consequently 8-OH-dG formation and that polyunsaturated fatty acids enhance lipid peroxidation associated with mediated 8-OH-dG formation through a chain reaction.  相似文献   

9.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, induced xanthine oxidase and xanthine dehydrogenase (XO/XDH) activities, in addition to ethoxyresorufin-O-dealkylase and methoxyresorufin-O-dealkylase activities in liver of mice. When TCDD was given to mice as a single oral dose of 40 microg/kg, the activities of XO and XDH increased about threefold within 3 days and the increased levels were maintained for 4 weeks. The treatment of mice with 3-methylcholanthrene also induced XO/XDH activities, but phenobarbital and dexamethasone had no effect. The level of aldehyde oxidase, a molybdenum flavoenzyme related to XO/XDH, in mouse liver was also enhanced about 1.5-fold by TCDD treatment. The inducing effect of TCDD and 3-methylcholanthrene was not observed in null mice (AhR(-/-)), which lack the AhR gene. XO and XDH activities were induced by TCDD in heterozygous mice (AhR(+/-)). The lipid peroxidation in liver was stimulated by TCDD. The induction of XO and XDH, which produces reactive oxygen species, may contribute to the various toxicities of TCDD.  相似文献   

10.
Dioxins are a class of polyhalogenated aromatic hydrocarbons that induce a wide spectrum of toxic responses in experimental animals. In this study, 2,3,7,8-tetrachlorobenzo-p-dioxin (TCDD) was exposed to two SD rat groups; one group for short-term exposure at a single dose of 1, 10, 20 and 50 mug/kg body weight (group 1) and the other for long-term exposure at daily and-low dose of 0.01, 0.1, 1 and 2.5 microg/kg body weight (group 2) for a month. Two-dimensional electrophoresis (2-DE) was utilized to resolve the protein profile of rat liver exposed to TCDD at different doses. In the analysis of 2-DE of the group 1, two new-expressed spots and seven volume-increased spots were detected and identified by ESI-Q-TOF MS/MS; especially, proteasome subunit beta type 3 was increased in all doses. In addition, in the group 2, six volume-increased spots were screened; particularly, histidine triad nucleotide binding protein was increased in both 0.1 microg/kg dose and 1 microg/kg dose. The identified proteins were confirmed using Western blot. Among the identified proteins, apolipoprotein A-IV may protect lipid peroxidation and atherosclerosis induced by TCDD exposure and the expression level of phosphoglycerate mutase increases due to hyperthyroidism induced by TCDD exposure.  相似文献   

11.
It was established that acute poisoning of rats by 1,2-dichloroethane induced considerable changes in lipid peroxidation indices, glutathione content and activity of antioxidant enzymes--superoxidase, catalase, glutathione peroxidase in the brain tissue, erythrocytes and blood plasma. It was shown that nicotinamide in the dose of 200 mg/kg prevented considerable degree of the intoxication caused by 1,2-dichloroethane as well as activation of lipid peroxidation and inhibition of antioxidant defens enzyme activities in tissue of experimental animals.  相似文献   

12.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) when added to suspensions of rat hepatic microsomes in the presence of NADPH has little influence on the peroxidation of microsomal lipids unless the system also contains complexed ferric ion, in which case TCDD stimulates. This stimulation does not appear to require metabolism of the TCDD. Peroxidation was monitored by production of thiobarbiturate-reactive substances (malondialdehyde and dienals), production of conjugated dienes, and disappearance of polyunsaturated fatty acids. Stimulation of lipid peroxidation by TCDD in a mixed lysosome-microsome preparation resulted in significantly decreased 'leakage' of acid phosphatase into the medium, implying an effect on lysosomal membranes. Consideration both of the present results and data in the literature leads to the conclusion that it is premature to attempt to define the relationship between enzyme induction, lipid peroxidation and TCDD lethality.  相似文献   

13.
It has been postulated that tumor suppressor genes are involved in the cascade of events leading to the toxicity of diverse xenobiotics. Therefore, we have assessed the comparative effects of 0.01, 0.10, and 0.50 median lethal doses (LD(50)) of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), endrin, naphthalene, and sodium dichromate (VI) [Cr(VI)] on lipid peroxidation, DNA fragmentation, and enhanced production of superoxide anion (cytochrome c reduction) in liver and brain tissues of p53-deficient and standard C57BL/6NTac mice to determine the role of p53 gene in the toxic manifestations produced by these diverse xenobiotics. In general, p53-deficient mice are more susceptible to all four xenobiotics than C57BL/6NTac mice, with dose-dependent effects being observed. Specifically, at a 0.50 LD(50) dose, naphthalene and Cr(VI) induced the greatest toxicity in the liver tissue of mice, and naphthalene and endrin exhibited the greatest effect in the brain tissue. At this dose, TCDD, endrin, naphthalene, and Cr(VI) induced 2.3- to 3.7-fold higher increases in hepatic lipid peroxidation and 1.8- to 3.0-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. At a 0. 10 LD(50) dose, TCDD, endrin, naphthalene, and Cr(VI) induced 1.3- to 1.8-fold higher increases in hepatic lipid peroxidation and 1.4- to 1.9-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. Similar results were observed with respect to DNA fragmentation and cytochrome c reduction (superoxide anion production). For example, at the 0.10 LD(50) dose, the four xenobiotics induced increases of 1.6- to 3. 0-fold and 1.5- to 2.1-fold in brain and liver DNA fragmentation, respectively, and increases of 1.5- to 2.3-fold and 1.4- to 2.5-fold in brain and liver cytochrome c reduction (superoxide anion production), respectively, in p53-deficient mice compared with control C57BL/6NTac mice. These results suggest that the p53 tumor suppressor gene may play a role in the toxicity of structurally diverse xenobiotics.  相似文献   

14.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm(2)) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione-S-transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress.  相似文献   

15.
Lipid peroxidation in the rat striatum under stress after cortisole injection was investigated. Three days cortisole injections (25 mg/kg every day) do not affect the level of lipid peroxidation products 6 days after termination of the hormone injection. However, in these periods, cortisole injected rats had a more significant response of lipid peroxidation to stress than the control animals (decrease of intermediate products and increase of Shift bases). Thus, the hormone injection induced a long-term changes in so important a regulatory system of the organisms as the lipid peroxidation, causing sensitization of its response to stress.  相似文献   

16.
Administration of dehydroepiandrosterone (DHEA), a steroid hormone of the adrenal cortex which acts as a peroxisome proliferator and hepatocarcinogen in the rat, caused an increase in NADPH-dependent lipid peroxidation in mitochondria isolated from the liver, kidney and heart, but not from the brain. The effect of DHEA on rat liver mitochondrial lipid peroxidation became discernible after feeding steroid-containing diet (0.6% w/w) for 3 days, and reached maximal levels between 1 and 2 weeks. DHEA in the concentration range 0.001–0.02% did not significantly increase lipid peroxidation compared to the control. Lipid peroxidation was significantly enhanced in animals given a diet containing ≥ 0.05% DHEA. The addition of DHEA in the concentration range 0.1–100 μM to mitochondria isolated from control rats had no effect on lipid peroxidation. It seems, therefore, that the steroid effect is mediated by an intracellular process. Our data indicate that induction of mitochondrial membrane lipid peroxidation is an early effect of DHEA administration at pharmacological doses.  相似文献   

17.
Effect of alimentary radionuclide load (137Cs, 700 Bq for animal per day during 7, 14 and 22 days) on the lipid peroxidation intensity and blood and liver enzymatic and non-enzymatic antioxidant system in the Wistar male-rats was investigated. It was found that considerable change of antioxidant system activity in plasma and erythrocytes of experimental animals was already noticeable on the 7th day of radionuclide load. After 22 days of experiment the reliability of glutathione-dependent antioxidant system in blood was essentially decreased and lipid hydroperoxide content was increased. The increase of lipid peroxidation intensity was also found in the experimental animals liver but at the same time the activities of all studied enzymes of antioxidant system were significantly higher than they were in the control rats.  相似文献   

18.
The objective of the study was to compare alterations in indicators of oxidative stress following 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in cytochrome P4501A2 (CYP1A2) knockout mice and their parental lineage strains (C57BL/6N and 129/Sv). This study will aid in determining the role, if any, of CYP1A2 in TCDD-mediated oxidative stress. Formation of thiobarbituric acid-reactive substances (TBARS) as a measurement of lipid peroxidation, production of reactive oxygen species (ROS) via the in vitro reduction of cytochrome c in tissue homogenate, and changes in the biochemical antioxidant glutathione were monitored to determine oxidative stress 7 days following a single oral dose of 25 microg TCDD/kg. TBARS, reduction of cytochrome c, and changes in glutathione demonstrated a similar response in CYP1A2 knockout and parental strains. These data suggest that CYP1A2 does not play a critical role in the acute oxidative stress response following TCDD exposure.  相似文献   

19.
《Free radical research》2013,47(1-2):57-68
The effects of oxidative stress caused by hyperoxia or administration of the redox active compound diquat were studied in isolated hepatocytes, and the relative contribution of lipid peroxidation, glutathione (GSH) depletion, and NADPH oxidation to the cytotoxicity of active oxygen species was investigated.

The redox cycling of diquat occurred primarily in the microsomal fraction since diquat was found not ' to penetrate into the mitochondria. Depletion of intracellular GSH by pretreatment of the animals with diethyl maleate promoted lipid peroxidation and sensitized the cells to oxidative stress. Diquat toxicity was also greatly enhanced when glutathione reductase was inhibited by pretreatment of the cells with 1,3-bis(2-chloroethyI)-1-nitrosourea. Despite extensive lipid peroxidation, loss of cell viability was not observed, with either hyperoxia or diquat, until the GSH level had fallen below ≈ 6 nmol/106 cells.

The iron chelator desferrioxamine provided complete protection against both diquat-induced lipid peroxidation and loss of cell viability. In contrast, the antioxidant a-tocopherol inhibited lipid peroxidation but provided only partial protection from toxicity. The hydroxy! radical scavenger α-keto-γ-methiol butyric acid, finally, also provided partial protection against diquat toxicity but had no effect on lipid peroxidation.

The results indicate that there is a critical GSH level above which cell death due to oxidative stress is not observed. As long as the glutathione peroxidase – glutathione reductase system is unaffected, even relatively low amounts of GSH can protect the cells by supporting glutathione peroxidase-mediated metabolism of H2O2 and lipid hydroperoxides.  相似文献   

20.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号