首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endothelial layer of blood vessels controls the passage of cells and solutes from the blood into the surrounding tissue. Crucial for this regulation is the integrity of endothelial cell–cell junctions. Various molecular mechanisms control junctional integrity of the endothelial layer including GTPases, modulation of the actomyosin cytoskeleton and phosphorylation and dephosphorylation of junctional proteins. Several kinases and phosphatases have been identified that are good candidates for the regulation of the endothelial barrier function. For some of them, in vivo evidence has recently been presented that highlights their importance in either the regulation of vascular permeability or leukocyte extravasation. This review will summarize current knowledge about the regulation of endothelial junctions by kinases and phosphatases. In particular, the role of the endothelial specific phosphatase VE-PTP in the context of endothelial cell contact stability will be highlighted.  相似文献   

2.
Tight junctions (TJs) and adherens junctions (AJs) are dynamic structures linked to the actin cytoskeleton, which control the paracellular permeability of epithelial and endothelial barriers. TJs and AJs are strictly regulated in a spatio-temporal manner by a complex signaling network, including Rho/Ras-GTPases, which have a pivotal role. Rho preferentially regulates TJs by controlling the contraction of apical acto-myosin filaments, whereas Rac/Cdc42 mainly coordinate the assembly-disassembly of AJ components. However, a subtle balance of Rho/Ras-GTPase activity and interplay between these molecules is required to maintain an optimal organization and function of TJs and AJs. Conversely, integrity of intercellular junctions generates signals through Rho-GTPases, which are involved in the regulation of multiple cellular processes. Rho/Ras-GTPases and the control of intercellular junctions are the target of various bacterial toxins responsible for severe diseases in man and animals, and are part of their mechanism of action. This review focuses on the regulation of TJs and AJs by Rho/Ras-GTPases through molecular approaches and bacterial toxins.  相似文献   

3.
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.  相似文献   

4.
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.  相似文献   

5.
Tight Junctions of the Blood–Brain Barrier   总被引:17,自引:0,他引:17  
1. The blood–brain barrier is essential for the maintainance and regulation of the neural microenvironment. The blood–brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. The latter is realized by the tight junctions between the endothelial cells of the brain microvasculature, which are subject of this review. Morphologically, blood–brain barrier-tight junctions are more similar to epithelial tight junctions than to endothelial tight junctions in peripheral blood vessels.2. Although blood–brain barrier-tight junctions share many characteristics with epithelial tight junctions, there are also essential differences. However, in contrast to tight junctions in epithelial systems, structural and functional characteristics of tight junctions in endothelial cells are highly sensitive to ambient factors.3. Many ubiquitous molecular constituents of tight junctions have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin, and 7H6. Signaling pathways involved in tight junction regulation comprise, among others, G-proteins, serine, threonine, and tyrosine kinases, extra- and intracellular calcium levels, cAMP levels, proteases, and TNF. Common to most of these pathways is the modulation of cytoskeletal elements which may define blood–brain barrier characteristics. Additionally, cross-talk between components of the tight junction– and the cadherin–catenin system suggests a close functional interdependence of the two cell–cell contact systems.4. Recent studies were able to elucidate crucial aspects of the molecular basis of tight junction regulation. An integration of new results into previous morphological work is the central intention of this review.  相似文献   

6.
In this report, sphingosine-1-phosphate (S1P), a serum-borne bioactive lipid, is shown to activate tight-junction-associated protein Zonula Occludens-1 (ZO-1), which in turn plays a critical role in regulating endothelial chemotaxis and barrier integrity. After S1P stimulation, ZO-1 was redistributed to the lamellipodia and cell-cell junctions via the S1P1/G(i)/Akt/Rac pathway. Similarly, both endothelial barrier integrity and cell motility were significantly enhanced in S1P-treated cells through the G(i)/Akt/Rac pathway. Importantly, S1P-enhanced barrier integrity and cell migration were abrogated in ZO-1 knockdown cells, indicating ZO-1 is functionally indispensable for these processes. To investigate the underlying mechanisms, we demonstrated that cortactin plays a critical role in S1P-induced ZO-1 redistribution to the lamellipodia. In addition, S1P significantly induced the formation of endothelial tight junctions. ZO-1 and alpha-catenin polypeptides were colocalized in S1P-induced junctional structures; whereas, cortactin was not observed in these regions. Together, these results suggest that S1P induces the formation of two distinct ZO-1 complexes to regulate two different endothelial functions: ZO-1/cortactin complexes to regulate chemotactic response and ZO-1/alpha-catenin complexes to regulate endothelial barrier integrity. The concerted operation of these two ZO-1 complexes may coordinate two important S1P-mediated functions, i.e. migration and barrier integrity, in vascular endothelial cells.  相似文献   

7.
Adducins tightly regulate actin dynamics which is critical for endothelial barrier function. Adducins were reported to regulate epithelial junctional remodeling by controlling the assembly of actin filaments at areas of cell-cell contact. Here, we investigated the role of α-adducin for endothelial barrier regulation by using microvascular human dermal and myocardial murine endothelial cells. Parallel transendothelial electrical resistance (TER) measurements and immunofluorescence analysis revealed that siRNA-mediated adducin depletion impaired endothelial barrier formation and led to severe fragmentation of VE-cadherin immunostaining at cell-cell borders. To further test whether the peripheral localization of α-adducin is functionally linked with the integrity of endothelial adherens junctions, junctional remodeling was induced by a Ca2+-switch assay. Ca2+-depletion disturbed both linear vascular endothelial (VE)-cadherin and adducin location along cell junctions, whereas their localization was restored following Ca2+-repletion. Similar results were obtained for α-adducin phosphorylated at a site typical for PKA (pSer481). To verify that endothelial barrier properties and junction reorganization can be effectively modulated by altering Ca2+-concentration, TER measurements were performed. Thus, Ca2+-depletion drastically reduced TER, whereas Ca2+-repletion led to recovery of endothelial barrier properties resulting in increased TER. Interestingly, the Ca2+-dependent increase in TER was also significantly reduced after efficient α-adducin downregulation. Finally, we report that inflammatory mediator-induced endothelial barrier breakdown is associated with loss of α-adducin from the cell membrane. Taken together, our results indicate that α-adducin is involved in remodeling of endothelial adhesion junctions and thereby contributes to endothelial barrier regulation.  相似文献   

8.
Afadin is a novel regulator of epithelial cell junctions assembly. However, its role in the formation of endothelial cell junctions and the regulation of vascular permeability remains obscure. We previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the in vitro and in vivo models of lung endothelial barrier dysfunction and acute lung injury, which were mediated by Rac GTPase. This study examined a role of afadin in the OxPAPC-induced enhancement of interactions between adherens junctions and tight junctions as a novel mechanism of endothelial cell (EC) barrier preservation. OxPAPC induced Rap1-dependent afadin accumulation at the cell periphery and Rap1-dependent afadin interaction with adherens junction and tight junction proteins p120-catenin and ZO-1, respectively. Afadin knockdown using siRNA or ectopic expression of afadin mutant lacking Rap1 GTPase binding domain suppressed OxPAPC-induced EC barrier enhancement and abolished barrier protective effects of OxPAPC against thrombin-induced EC permeability. Afadin knockdown also abolished protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results demonstrate for the first time a critical role of afadin in the regulation of vascular barrier function in vitro and in vivo via coordination of adherens junction-tight junction interactions.  相似文献   

9.
Podosomes and tight junctions (TJs) are subcellular compartments that both exist in endothelial cells and localize at cell surfaces. In contrast to the well-characterized role of TJs in maintaining cerebrovascular integrity, the specific function of endothelial podosomes remains unknown. Intriguingly, we discovered cross-talk between podosomes and TJs in human brain endothelial cells. Tight junction scaffold proteins ZO-1 and ZO-2 localize at podosomes in response to phorbol-12-myristate-13-acetate treatment. We found that both ZO proteins are essential for podosome formation and function. Rather than being derived from new protein synthesis, podosomal ZO-1 and ZO-2 are relocated from a pre-existing pool found at the peripheral plasma membrane with enhanced physical interaction with cortactin, a known protein marker for podosomes. Sequestration of ZO proteins in podosomes weakens tight junction complex formation, leading to increased endothelial cell permeability. This effect can be further attenuated by podosome inhibitor PP2. Altogether, our data revealed a novel cellular function of podosomes, specifically, their ability to negatively regulate tight junction and endothelial barrier integrity, which have been linked to a variety of cerebrovascular diseases.  相似文献   

10.
Organization of multiprotein complexes at cell–cell junctions   总被引:1,自引:1,他引:0  
The formation of stable cell-cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell-cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell-cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell-cell contact formation and maintenance.  相似文献   

11.
Cell-cell-interactions are important for the regulation of tissue integrity, the generation of barriers between different tissues and body compartments thereby providing an effective defence against toxic or pathogenic agents, as well as for the regulation of inflammatory cell recruitment. Intercellular interactions are regulated by adhesion receptors on adjacent cells which upon extracellular ligand binding mediate intracellular signals. In the vasculature, neighbouring endothelial cells interact with each other through various adhesion molecules leading to the generation of junctional complexes like tight junctions (TJs) and adherens junctions (AJs) which regulate both leukocyte endothelial interactions and paracellular permeability. In this context, emerging evidence points to the importance of the family of junctional adhesion molecules (JAMs), which are localized in tight junctions of endothelial and epithelial cells and are implicated in the regulation of both leukocyte extravasation as well as junction formation and permeability.  相似文献   

12.
Endothelial cells (ECs) form a monolayer that serves as a barrier between the blood and the underlying tissue. ECs tightly regulate their cell-cell junctions, controlling the passage of soluble materials and immune cells across the monolayer barrier. We studied the role of N-WASP, a key regulator of Arp2/3 complex and actin assembly, in EC monolayers. We report that N-WASP regulates endothelial monolayer integrity by affecting the organization of cell junctions. Depletion of N-WASP resulted in an increase in transendothelial electrical resistance, a measure of monolayer integrity. N-WASP depletion increased the width of cell-cell junctions and altered the organization of F-actin and VE-cadherin at junctions. N-WASP was not present at cell-cell junctions in monolayers under resting conditions, but it was recruited following treatment with sphingosine-1-phosphate. Taken together, our results reveal a novel role for N-WASP in remodeling EC junctions, which is critical for monolayer integrity and function.  相似文献   

13.
Confluent endothelial cells in culture are generally regarded as a model of resting endothelium in blood vessels (i.e., forming junctions at points of cell-cell contact, losing ability to proliferate in response to growth factors, and remaining stationary). However, incompatibility between junctional integrity and endothelial cell motility remains uncertain. The aim of this study was to determine whether endothelial cells (in colonies generated from differentiating embryonic stem cells in contact with OP9 stromal cell layer) have a resting endothelial phenotype (i.e., lack motility). Time-lapse analyses showed that though endothelial cells were connected to each other through adherens junctions and tight junctions, they were moving continuously within the colonies. Endothelial cell movement was accompanied by formation of lamellipodia, which transiently accumulated green fluorescent protein-tagged beta-actin and p41-Arc (a subunit of the actin-related protein 2/3 complex) at their anterior tips, suggesting that the movement is an active behavior of endothelial cells. Endothelial cell-specific expression of yellow fluorescent protein-tagged vascular endothelial-cadherin and claudin-5 revealed that adherens junctions and tight junctions persisted during endothelial cell migration. Furthermore, intercellular junctions underwent dynamic remodeling at the leading edge of moving endothelial cells. These results suggest that endothelial cells can remain highly motile without losing intercellular junctions.  相似文献   

14.
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism.  相似文献   

15.
Physiological hydrostatic pressure protects endothelial monolayer integrity   总被引:1,自引:0,他引:1  
Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.  相似文献   

16.
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.  相似文献   

17.
Cytoskeletal regulation of pulmonary vascular permeability.   总被引:17,自引:0,他引:17  
The endothelial cell (EC) lining of the pulmonary vasculature forms a semipermeable barrier between the blood and the interstitium of the lung. Disruption of this barrier occurs during inflammatory disease states such as acute lung injury and acute respiratory distress syndrome and results in the movement of fluid and macromolecules into the interstitium and pulmonary air spaces. These processes significantly contribute to the high morbidity and mortality of patients afflicted with acute lung injury. The critical importance of pulmonary vascular barrier function is shown by the balance between competing EC contractile forces, which generate centripetal tension, and adhesive cell-cell and cell-matrix tethering forces, which regulate cell shape. Both competing forces in this model are intimately linked through the endothelial cytoskeleton, a complex network of actin microfilaments, microtubules, and intermediate filaments, which combine to regulate shape change and transduce signals within and between EC. A key EC contractile event in several models of agonist-induced barrier dysfunction is the phosphorylation of regulatory myosin light chains catalyzed by Ca(2+)/calmodulin-dependent myosin light chain kinase and/or through the activity of the Rho/Rho kinase pathway. Intercellular contacts along the endothelial monolayer consist primarily of two types of complexes (adherens junctions and tight junctions), which link to the actin cytoskeleton to provide both mechanical stability and transduction of extracellular signals into the cell. Focal adhesions provide additional adhesive forces in barrier regulation by forming a critical bridge for bidirectional signal transduction between the actin cytoskeleton and the cell-matrix interface. Increasingly, the effects of mechanical forces such as shear stress and ventilator-induced stretch on EC barrier function are being recognized. The critical role of the endothelial cytoskeleton in integrating these multiple aspects of pulmonary vascular permeability provides a fertile area for the development of clinically important barrier-modulating therapies.  相似文献   

18.
The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional "neurovascular units", which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.  相似文献   

19.
Blood vessels are covered with endothelial cells on their inner surfaces, forming a selective and semipermeable barrier between the blood and the underlying tissue. Many pathological processes, such as inflammation or cancer metastasis, are accompanied by an increased vascular permeability. Progress in live cell imaging techniques has recently revealed that the structure of endothelial cell contacts is constantly reorganized and that endothelial junctions display high heterogeneities at a subcellular level even within one cell. Although it is assumed that this dynamic remodeling is associated with a local change in endothelial barrier function, a direct proof is missing mainly because of a lack of appropriate experimental techniques. Here, we describe a new assay to dynamically measure local endothelial barrier function with a lateral resolution of ~15 μm and a temporal resolution of 1 min. In this setup, fluorescence-labeled molecules are added to the apical compartment of an endothelial monolayer, and the penetration of molecules from the apical to the basal compartment is recorded by total internal reflection fluorescence microscopy utilizing the generated evanescent field. With this technique, we found a remarkable heterogeneity in the local permeability for albumin within confluent endothelial cell layers. In regions with low permeability, stimulation with the proinflammatory agent histamine results in a transient increase in paracellular permeability. The effect showed a high variability along the contact of one individual cell, indicating a local regulation of endothelial barrier function. In regions with high basal permeability, histamine had no obvious effect. In contrast, the barrier-enhancing drug forskolin reduces the permeability for albumin and dextran uniformly along the cell junctions. Because this new approach can be readily combined with other live cell imaging techniques, it will contribute to a better understanding of the mechanisms underlying subcellular junctional reorganization during wound healing, inflammation, and angiogenesis.  相似文献   

20.
Rüffer C  Strey A  Janning A  Kim KS  Gerke V 《Biochemistry》2004,43(18):5360-5369
Endothelial cell-cell contacts control the vascular permeability, thereby regulating the flow of solutes, macromolecules, and leukocytes between blood vessels and interstitial space. Because of specific needs, the endothelial permeability differs significantly between the tight blood-brain barrier endothelium and the more permeable endothelial lining of the non-brain microvasculature. Most likely, such differences are due to a differing architecture of the respective interendothelial cell contacts. However, while the molecules and junctional complexes of macrovascular endothelial cells and the blood-brain barrier endothelium are fairly well characterized, much less is known about the organization of intercellular contacts of microvascular endothelium. Toward this end, we developed a combined cross-linking and immunoprecipitation protocol which enabled us to map nearest neighbor interactions of junctional proteins in the human dermal microvascular endothelial cell line HMEC-1. We show that proteins typically located in tight or adherens junctions of epithelial cells are in the proximity in HMEC-1 cells. This contrasts with the separation of the different types of junctions observed in polarized epithelial cells and "tight" endothelial layers of the blood-brain barrier and argues for a need of the specific junctional contacts in microvascular endothelium possibly required to support an efficient transendothelial migration of leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号