首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past few years several drugs that target epigenetic modifications have shown clinical benefits, thus seemingly validating epigenetic cancer therapy. More recently, however, it has become clear that these drugs are either characterized by low specificity or that their target enzymes have low substrate specificity. As such, clinical proof-of-concept for epigenetic cancer therapies remains to be established. Human cancers are characterized by widespread changes in their genomic DNA methylation and histone modification patterns. Epigenetic cancer therapy aims to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. In this review, we provide an overview about the known functional roles of DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases in cancer development. The available data identify several examples that warrant further consideration as drug targets. Future research should be directed toward targeted enzyme inhibition and toward exploring interactions between epigenetic pathways to maximize cancer specificity.  相似文献   

2.
《Epigenetics》2013,8(2):107-112
Cancer epigenetics research is now entering an exciting phase of translational epigenetics whereby novel epigenome therapeutics is being developed for application in clinical settings. Epigenetics refers to all heritable and potentially reversible changes in gene or genome functioning that occurs without altering the nucleotide sequence of the DNA. A range of different epigenetic “marks” can activate or repress gene expression. While epigenetic alterations are associated with most cancers, epigenetic dysregulation can also have a causal role in cancer etiology. Epigenetically disrupted stem or progenitor cells could have an early role in neoplastic transformations, while perturbance of epigenetic regulatory mechanisms controlling gene expression in cancer-relevant pathways will also be a contribution factor. The reversibility of epigenetic marks provides the possibility that the activity of key cancer genes and pathways can be regulated as a therapeutic approach. The growing availability of a range of chemical agents which can affect epigenome functioning has led to a range of epigenetic-therapeutic approaches for cancer and intense interest in the development of second-generation epigenetic drugs (epi-drugs) which would have greater specificity and efficacy in clinical settings. The latest developments in this exciting arena of translational cancer epigenetics were presented at a recent conference on “Epigenetics and New Therapies in Cancer” at the Spanish National Cancer Research Center (CNIO), Spain.  相似文献   

3.
Polymorphisms have been identified in proto-oncogenes and tumor suppressor genes that predispose people to cancer. Recent evidence indicates that genomic imprinting, an epigenetic form of gene regulation that results in uniparental gene expression, can also function as a cancer predisposing event. Thus, cancer susceptibility is increased by both Mendelian inherited genetic and non-Mendelian inherited epigenetic events. Consequently, chemical and physical agents cannot only induce cancer through the formation of genetic mutations but also through epigenetic changes that result in the inappropriate expression of imprinted proto-oncogenes and tumor suppressor genes. The role of genomic imprinting in carcinogenesis and cancer susceptibility is examined in this review.  相似文献   

4.
肿瘤表观基因组学研究进展   总被引:1,自引:1,他引:0  
多年来遗传学改变一直是肿瘤研究的焦点,近来人们越来越认识到异常表观遗传修饰在肿瘤形成中所起的重要作用。表观遗传修饰包括DNA甲基化、组蛋白修饰等,其变异会导致基因转录异常。表观基因组学是在基因组水平上对表观遗传学改变的研究。文章主要介绍目前已知的肿瘤表观基因组学相关内容,阐述表观遗传修饰与肿瘤的紧密关系及异常表观遗传修饰作为生物标记在肿瘤诊断、预后及治疗方面的最新研究进展。  相似文献   

5.
A body of evidence accumulated over the past decade suggests that epigenetic mechanisms play an essential role in maintaining important cellular functions. Changes in epigenetic patterns (mainly DNA hyper- and hypomethylation and, more recently, histone modifications) may contribute to the development of cancer. Aberrant epigenetic events expand thorough tumor progression from the earliest to latest stages, therefore they can serve as convenient markers for detection and prognosis of cancer. The potential reversibility of epigenetic states in the tumor cell is an attractive target for cancer therapy. Much of our current knowledge on epigenetic alternations in cancer comes from studies on gastrointestinal malignancies, mainly on colorectal cancer, which currently serves as a model for epigenetic tumorigenesis. This review summarizes the current knowledge of epigenetic changes in gastrointestinal cancers and how this relates directly to disease progression and prognosis.  相似文献   

6.
LncRNAs (long non-coding RNAs) have emerged as key molecular players in the regulation of gene expression in different biological processes. Their involvement in epigenetic processes includes the recruitment of histone-modifying enzymes and DNA methyltransferases, leading to the establishment of chromatin conformation patterns that ultimately result in the fine control of genes. Some of these genes are related to tumorigenesis and it is well documented that the misregulation of epigenetic marks leads to cancer. In this review, we highlight how some of the lncRNAs implicated in cancer are involved in the epigenetic control of gene expression. While very few lncRNAs have already been identified as players in determining the cancer-survival outcome in a number of different cancer types, for most of the lncRNAs associated with epigenetic regulation only their altered pattern of expression in cancer is demonstrated. Thanks to their tissue-specificity features, lncRNAs have already been proposed as diagnostic markers in specific cancer types. We envision the discovery of a wealth of novel spliced and unspliced intronic lncRNAs involved in epigenetic networks or in highly location-specific epigenetic control, which might be predominantly altered in specific cancer subtypes. We expect that the characterization of new lncRNA (long non-coding RNA)–protein and lncRNA–DNA interactions will contribute to the discovery of potential lncRNA targets for use in therapies against cancer.  相似文献   

7.
Epigenetic mechanisms maintain heritable changes in gene expression and chromatin organization over many cell generations. Importantly, deregulated epigenetic mechanisms play a key role in a wide range of human malignancies, including liver cancer. Hepatocellular carcinoma (HCC), which originates from the hepatocytes, is by far the most common liver cancer, with rates and aetiology that show considerable geographic variation. Various environmental agents and lifestyles known to be risk factors for HCC (such as infection by hepatitis B virus (HBV) and hepatitis C virus (HCV), chronic alcohol intake, and aflatoxins) are suspected to promote its development by eliciting epigenetic changes, however the precise gene targets and underlying mechanisms have not been elucidated. Many recent studies have exploited conceptual and technological advances in epigenetics and epigenomics to investigate the role of epigenetic events induced by environmental factors in HCC tumors and non-tumor precancerous (cirrhotic) lesions. These studies have identified a large number of genes and pathways that are targeted by epigenetic deregulation (changes in DNA methylation, histone modifications and RNA-mediated gene silencing) during the development and progression of HCC. Frequent identification of aberrant epigenetic changes in specific genes in cirrhotic tissue is consistent with the notion that epigenetic deregulation of selected genes in pre-malignant lesions precedes and promotes the development of HCC. In addition, several lines of evidence argue that some environmental factors (such as HBV virus) may abrogate cellular defense systems, induce silencing of host genes and promote HCC development via an "epigenetic strategy". Finally, profiling studies reveal that HCC tumors and pre-cancerous lesions may exhibit epigenetic signatures associated with specific risk factors and tumor progression stage. Together, recent evidence underscores the importance of aberrant epigenetic events induced by environmental factors in liver cancer and highlights potential targets for biomarker discovery and future preventive and therapeutic strategies.  相似文献   

8.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

9.
长链非编码RNA(lncRNA)是一类转录本长度大于200 nt的RNA分子,编码蛋白质的功能有限,但其功能多样且复杂。已有研究报道lncRNA与肿瘤的发展进程密切相关,lncRNA可以通过不同方式参与细胞内生物学进程的调控,是潜在的癌症调节因子,其中,调节表观遗传修饰水平是其影响癌症进程的主要手段;癌症发病过程中细胞内存在着不同程度的表观遗传修饰,其主要为包括甲基化、乙酰化、磷酸化、糖基化、泛素化等修饰方式在内的DNA修饰、RNA修饰以及蛋白质的翻译后修饰,在癌症的不同阶段其修饰的异常程度不同,从而影响肿瘤发生的生物学进程。研究表明,lncRNA可以通过自身修饰或参与其他生物大分子的表观遗传修饰进程参与癌症的发生发展。因此,回顾了lncRNA所参与的表观遗传修饰形式和lncRNA在表观遗传修饰方面所起到的作用,并概述了lncRNA通过影响表观遗传修饰水平从而调控癌症进程的方法。旨在总结癌症细胞内表观遗传修饰方面所涉及lncRNA的研究进展,为癌症诊断和治疗提供潜在的靶标和生物学标志物。  相似文献   

10.
《Epigenetics》2013,8(7):849-852
Colon and rectal cancer (colorectal cancer, CRC) is the third most common cancer worldwide. Deaths from CRC account for around 8% of all cancer deaths, making it the fourth most common cause of death from cancer. The high mortality rate of colon cancer is mainly attributable to its metastasis. Efforts have been made to identify metastasis suppressor genes, which encode proteins responsible for inhibiting the metastasis but not suppressing the growth of primary tumors. Studies on metastasis suppressor genes demonstrated that epigenetic modifications, such as DNA promoter methylation and histone modification, play crucial roles in regulating the expression of many metastasis suppressor genes, which indicates the association between aberrant epigenetic alterations and cancer metastasis. This review will focus on the recent findings regarding metastasis suppressors regulated by epigenetic modifications, particularly DNA methylation and histone modification, in CRC metastasis. Also discussed will be recent progress on the suppression of CRC metastasis by genistein, a soy isoflavone, with a focus on epigenetic mechanisms.  相似文献   

11.
Genetic and epigenetic heterogeneity (the main form of non‐genetic heterogeneity) are key elements in cancer progression and drug resistance, as they provide needed population diversity, complexity, and robustness. Despite drastically increased evidence of multiple levels of heterogeneity in cancer, the general approach has been to eliminate the “noise” of heterogeneity to establish genetic and epigenetic patterns. In particular, the appreciation of new types of epigenetic regulation like non‐coding RNA, have led to the hope of solving the mystery of cancer that the current genetic theories seem to be unable to achieve. In this mini‐review, we have briefly analyzed a number of mis‐conceptions regarding cancer heterogeneity, followed by the re‐evaluation of cancer heterogeneity within a framework of the genome‐centric concept of evolution. The analysis of the relationship between gene, epigenetic and genome level heterogeneity, and the challenges of measuring heterogeneity among multiple levels have been discussed. Further, we propose that measuring genome level heterogeneity represents an effective strategy in the study of cancer and other types of complex diseases, as emphasis on the pattern of system evolution rather than specific pathways provides a global and synthetic approach. Compared to the degree of heterogeneity, individual molecular pathways will have limited predictability during stochastic cancer evolution where genome dynamics (reflected by karyotypic heterogeneity) will dominate. J. Cell. Physiol. 220: 538–547, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.  相似文献   

14.
According to the concept of immune surveillance, the appearance of a tumor indicates that it has earlier evaded host defenses and subsequently must have escaped immunity to evolve into a full-blown cancer. Tumor escape mechanisms have focused mainly on mutations of immune and apoptotic pathway genes. However, data obtained over the past few years suggest that epigenetic silencing in cancer may be as frequent a cause of gene inactivation as are mutations. Here, we discuss the evidence that tumor immune evasion is mediated by non-mutational epigenetic events involving chromatin and that epigenetics collaborates with mutations in determining tumor progression. Since epigenetic changes are potentially reversible, the relative contribution of mutations and epigenetics, to the gene defects in any given tumor, may be a factor in determining the efficacy of treatments. We review new developments in basic chromatin mechanisms and in this context describe the rationale for the current use of epigenetic agents in cancer therapy and for a novel epigenetically generated tumor vaccine model. We emphasize that epigenetic cancer treatments are currently a ‘blunt-sword’ and suggest future directions for designing chromatin-based programs of potential value in the diagnosis and treatment of cancer.  相似文献   

15.
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.  相似文献   

16.
Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.  相似文献   

17.
Prostate cancer is a commonly diagnosed cancer in men and a leading cause of cancer deaths. Whilst the underlying mechanisms leading to prostate cancer are still to be determined, it is evident that both genetic and epigenetic changes contribute to the development and progression of this disease. Epigenetic changes involving DNA hypo- and hypermethylation, altered histone modifications and more recently changes in microRNA expression have been detected at a range of genes associated with prostate cancer. Furthermore, there is evidence that particular epigenetic changes are associated with different stages of the disease. Whilst early detection can lead to effective treatment, and androgen deprivation therapy has a high response rate, many tumours develop towards hormone-refractory prostate cancer, for which there is no successful treatment. Reliable markers for early detection and more effective treatment strategies are, therefore, needed. Consequently, there is a considerable interest in the potential of epigenetic changes as markers or targets for therapy in prostate cancer. Epigenetic modifiers that demethylate DNA and inhibit histone deacetylases have recently been explored to reactivate silenced gene expression in cancer. However, further understanding of the mechanisms and the effects of chromatin modulation in prostate cancer are required. In this review, we examine the current literature on epigenetic changes associated with prostate cancer and discuss the potential use of epigenetic modifiers for treatment of this disease.  相似文献   

18.
Context The silencing or activation of cancer-associated genes by epigenetic mechanisms can ultimately lead to the clonal expansion of cancer cells. Objective The aim of this review is to summarize all relevant epigenetic biomarkers that have been proposed to date for the diagnosis of some prevalent human cancers. Methods A Medline search for the terms epigenetic biomarkers, human cancers, DNA methylation, histone modifications and microRNAs was performed. Results One hundred fifty-seven relevant publications were found and reviewed. Conclusion To date, a significant number of potential epigenetic cancer biomarkers of human cancer have been investigated, and some have advanced to clinical implementation.  相似文献   

19.
Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14ARF and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively.  相似文献   

20.
Epigenetic memory is an essential process of life that governs the inheritance of predestined functional characteristics of normal cells and the newly acquired properties of cells affected by cancer and other diseases from parental to progeny cells. Unraveling the molecular basis of epigenetic memory dictated by protein and RNA factors in conjunction with epigenetic marks that are erased and re-established during embryogenesis/development during the formation of somatic, stem and disease cells will have far reaching implications to our understanding of embryogenesis/development and various diseases including cancer. While there has been enormous progress made, there are still gaps in knowledge which includes, the identity of unique epigenetic memory factors (EMFs) and epigenome coding enzymes/co-factors/scaffolding proteins involved in the assembly of defined “epigenetic memorysomes” and the epigenome marks that constitute collections of gene specific epigenetic memories corresponding to specific cell types and physiological conditions. A better understanding of the molecular basis for epigenetic memory will play a central role in improving diagnostics and prognostics of disease states and aid the development of targeted therapeutics of complex diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号