首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.  相似文献   

3.
4.
Burri A  Hysi P  Clop A  Rahman Q  Spector TD 《PloS one》2012,7(4):e35041

Background

Female sexual dysfunction (FSD) is an important but controversial problem with serious negative impact on women’s quality of life. Data from twin studies have shown a genetic contribution to the development and maintenance of FSD.

Methodology/Principal Findings

We performed a genome-wide association study (GWAS) on 2.5 million single-nucleotide polymorphisms (SNPs) in 1,104 female twins (25–81 years of age) in a population-based register and phenotypic data on lifelong sexual functioning. Although none reached conventional genome-wide level of significance (10×-8), we found strongly suggestive associations with the phenotypic dimension of arousal (rs13202860, P = 1.2×10−7; rs1876525, P = 1.2×10−7; and rs13209281 P = 8.3×10−7) on chromosome 6, around 500kb upstream of the locus HTR1E (5-hydroxytryptamine receptor 1E) locus, related to the serotonin brain pathways. We could not replicate previously reported candidate SNPs associated with FSD in the DRD4, 5HT2A and IL-1B loci.

Conclusions/Significance

We report the first GWAS of FSD symptoms in humans. This has pointed to several “risk alleles” and the implication of the serotonin and GABA pathways. Ultimately, understanding key mechanisms via this research may lead to new FSD treatments and inform clinical practice and developments in psychiatric nosology.  相似文献   

5.
The EphB2 gene has been implicated as a tumor suppressor gene somatically altered in both prostate cancer (PC) and colorectal cancer. We have previously shown an association between an EphB2 germline nonsense variant and risk of familial prostate cancer among African American Men (AAM). Here we set out to test the hypothesis that common variation within the EphB2 locus is associated with increased risk of sporadic PC in AAM. We genotyped a set of 341 single nucleotide polymorphisms (SNPs) encompassing the EphB2 locus, including known and novel coding and noncoding variants, in 490 AA sporadic PC cases and 567 matched controls. Single marker-based logistical regression analyses revealed seven EphB2 SNPs showing statistically significant association with prostate cancer risk in our population. The most significant association was achieved for a novel synonymous coding SNP, TGen-624, (Odds Ratio (OR) =?0.22; 95% Confidence Interval (CI) 0.08-0.66, p?=?1×10(-5)). Two other SNPs also show significant associations toward a protective effect rs10465543 and rs12090415 (p?=?1×10(-4)), OR?=?0.49 and 0.7, respectively. Two additional SNPs revealed trends towards an increase in risk of prostate cancer, rs4612601 and rs4263970 (p?=?0.001), OR?=?1.35 and 1.31, respectively. Furthermore, haplotype analysis revealed low levels of linkage disequilibrium within the region, with two blocks being associated with prostate cancer risk among our population. These data suggest that genetic variation at the EphB2 locus may increase risk of sporadic PC among AAM.  相似文献   

6.
Genome-wide association studies (GWAS) have successfully detected and replicated associations with numerous diseases, including cancers of the prostate and breast. These findings are helping clarify the genomic basis of such diseases, but appear to explain little of disease heritability. This limitation might reflect the focus of conventional GWAS on a small set of the most statistically significant associations with disease. More information might be obtained by analyzing GWAS using a polygenic model, which allows for the possibility that thousands of genetic variants could impact disease. Furthermore, there may exist common polygenic effects between potentially related phenotypes (e.g., prostate and breast cancer). Here we present and apply a polygenic model to GWAS of prostate and breast cancer. Our results indicate that the polygenic model can explain an increasing--albeit low--amount of heritability for both of these cancers, even when excluding the most statistically significant associations. In addition, nonaggressive prostate cancer and breast cancer appear to share a common polygenic model, potentially reflecting a similar underlying biology. This supports the further development and application of polygenic models to genomic data.  相似文献   

7.
Genome-wide association studies in cancer have already identified over 150 regions associated with two dozen specific cancers. Already, a handful of multi-cancer susceptibility regions have been uncovered, providing new insights into perhaps common mechanisms of carcinogenesis. For each new susceptibility allele, investigators now face the arduous task of interrogating each region beginning with fine mapping prior to pursuing the biological basis for the direct association of one or more variants. It appears that there may be a significant number of common alleles that contribute to the heritability of a specific cancer. Since each region confers a small contribution to the risk for cancer, it is daunting to consider any single nucleotide polymorphism (SNP) as a clinical test. Since the complex genomic architecture of each cancer differs, additional genotyping and sequence analysis will be required to comprehensively catalog susceptibility alleles followed by the formidable task of understanding the interactions between genetic regions as well as the environment. It will be critical to assess the applicability of genetic tests in specific clinical settings, such as when to perform screening tests with calculable risks (e.g., biopsies or chemoprevention), before incorporating SNPs into clinical practice. To advance the current genomic observations to the clinical venue, new studies will need to be designed to validate the utility of known genetic variants in assessing risk for cancer as well as its outcomes.  相似文献   

8.
9.
Large-scale genome-wide association studies (GWAS) have identified many loci associated with body mass index (BMI), but few studies focused on obesity as a binary trait. Here we report the results of a GWAS and candidate SNP genotyping study of obesity, including extremely obese cases and never overweight controls as well as families segregating extreme obesity and thinness. We first performed a GWAS on 520 cases (BMI>35 kg/m(2)) and 540 control subjects (BMI<25 kg/m(2)), on measures of obesity and obesity-related traits. We subsequently followed up obesity-associated signals by genotyping the top ~500 SNPs from GWAS in the combined sample of cases, controls and family members totaling 2,256 individuals. For the binary trait of obesity, we found 16 genome-wide significant signals within the FTO gene (strongest signal at rs17817449, P = 2.5 × 10(-12)). We next examined obesity-related quantitative traits (such as total body weight, waist circumference and waist to hip ratio), and detected genome-wide significant signals between waist to hip ratio and NRXN3 (rs11624704, P = 2.67 × 10(-9)), previously associated with body weight and fat distribution. Our study demonstrated how a relatively small sample ascertained through extreme phenotypes can detect genuine associations in a GWAS.  相似文献   

10.
Despite the family aggregation of severe teenage acne, the genetic basis of this common skin condition remains unclear. We conducted a genome-wide association study (GWAS) on severe teenage acne in 928 European Americans. The SNP rs4133274 on chromosome 8q24 (72 kb upstream of MYC) revealed the most significant association with severe teenage acne (p value = 1.7 × 10?6). The variant allele of this SNP (G allele) was associated with an increased risk of severe teenage acne with odds ratio of 4.01 (95 % confidence interval = 2.37–6.82). Upon further replication, our findings suggest new genetic basis of acne and may explain the association between acne and cancer risk observed in the epidemiological studies.  相似文献   

11.

Background

The deployment of Genome-wide association studies (GWASs) requires genomic information of a large population to produce reliable results. This raises significant privacy concerns, making people hesitate to contribute their genetic information to such studies.

Results

We propose two provably secure solutions to address this challenge: (1) a somewhat homomorphic encryption (HE) approach, and (2) a secure multiparty computation (MPC) approach. Unlike previous work, our approach does not rely on adding noise to the input data, nor does it reveal any information about the patients. Our protocols aim to prevent data breaches by calculating the χ2 statistic in a privacy-preserving manner, without revealing any information other than whether the statistic is significant or not. Specifically, our protocols compute the χ2 statistic, but only return a yes/no answer, indicating significance. By not revealing the statistic value itself but only the significance, our approach thwarts attacks exploiting statistic values. We significantly increased the efficiency of our HE protocols by introducing a new masking technique to perform the secure comparison that is necessary for determining significance.

Conclusions

We show that full-scale privacy-preserving GWAS is practical, as long as the statistics can be computed by low degree polynomials. Our implementations demonstrated that both approaches are efficient. The secure multiparty computation technique completes its execution in approximately 2 ms for data contributed by one million subjects.
  相似文献   

12.
The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases.  相似文献   

13.
African Americans have increased susceptibility to non-diabetic (non-DM) forms of end-stage renal disease (ESRD) and extensive evidence supports a genetic contribution. A genome-wide association study (GWAS) using pooled DNA was performed in 1,000 African Americans to detect associated genes. DNA from 500 non-DM ESRD cases and 500 non-nephropathy controls was quantified using gel electrophoresis and spectrophotometric analysis and pools of 50 case and 50 control DNA samples were created. DNA pools were genotyped in duplicate on the Illumina HumanHap550-Duo BeadChip. Normalization methods were developed and applied to array intensity values to reduce inter-array variance. Allele frequencies were calculated from normalized channel intensities and compared between case and control pools. Three SNPs had p values of <1.0E−6: rs4462445 (ch 13), rs4821469 (ch 22) and rs8077346 (ch 17). After normalization, top scoring SNPs (n = 65) were genotyped individually in 464 of the original cases and 478 of the controls, with replication in 336 non-DM ESRD cases and 363 non-nephropathy controls. Sixteen SNPs were associated with non-DM ESRD (p < 7.7E−4, Bonferroni corrected). Twelve of these SNPs are in or near the MYH9 gene. The four non-MYH9 SNPs that were associated with non-DM ESRD in the pooled samples were not associated in the replication set. Five SNPs that were modestly associated in the pooled samples were more strongly associated in the replication and/or combined samples. This is the first GWAS for non-DM ESRD in African Americans using pooled DNA. We demonstrate strong association between non-DM ESRD in African Americans with MYH9, and have identified additional candidate loci.  相似文献   

14.
Previous genome-wide association studies (GWAS) have shown several risk alleles to be associated with breast cancer. However, the variants identified so far contribute to only a small proportion of disease risk. The objective of our GWAS was to identify additional novel breast cancer susceptibility variants and to replicate these findings in an independent cohort. We performed a two-stage association study in a cohort of 3,064 women from Alberta, Canada. In Stage I, we interrogated 906,600 single nucleotide polymorphisms (SNPs) on Affymetrix SNP 6.0 arrays using 348 breast cancer cases and 348 controls. We used single-locus association tests to determine statistical significance for the observed differences in allele frequencies between cases and controls. In Stage II, we attempted to replicate 35 significant markers identified in Stage I in an independent study of 1,153 cases and 1,215 controls. Genotyping of Stage II samples was done using Sequenom Mass-ARRAY iPlex platform. Six loci from four different gene regions (chromosomes 4, 5, 16 and 19) showed statistically significant differences between cases and controls in both Stage I and Stage II testing, and also in joint analysis. The identified variants were from EDNRA, ROPN1L, C16orf61 and ZNF577 gene regions. The presented joint analyses from the two-stage study design were not significant after genome-wide correction. The SNPs identified in this study may serve as potential candidate loci for breast cancer risk in a further replication study in Stage III from Alberta population or independent validation in Caucasian cohorts elsewhere.  相似文献   

15.

Background

Requirements for successful implementation of multivariate animal threshold models including phenotypic and genotypic information are not known yet. Here simulated horse data were used to investigate the properties of multivariate estimators of genetic parameters for categorical, continuous and molecular genetic data in the context of important radiological health traits using mixed linear-threshold animal models via Gibbs sampling. The simulated pedigree comprised 7 generations and 40000 animals per generation. Additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits were simulated, resembling situations encountered in the Warmblood horse. Quantitative trait locus (QTL) effects and genetic marker information were simulated for one of the liabilities. Different scenarios with respect to recombination rate between genetic markers and QTL and polymorphism information content of genetic markers were studied. For each scenario ten replicates were sampled from the simulated population, and within each replicate six different datasets differing in number and distribution of animals with trait records and availability of genetic marker information were generated. (Co)Variance components were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. Residual variances were fixed to zero and a proper prior was used for the genetic covariance matrix.

Results

Effective sample sizes (ESS) and biases of genetic parameters differed significantly between datasets. Bias of heritability estimates was -6% to +6% for the continuous trait, -6% to +10% for the binary traits of moderate heritability, and -21% to +25% for the binary traits of low heritability. Additive genetic correlations were mostly underestimated between the continuous trait and binary traits of low heritability, under- or overestimated between the continuous trait and binary traits of moderate heritability, and overestimated between two binary traits. Use of trait information on two subsequent generations of animals increased ESS and reduced bias of parameter estimates more than mere increase of the number of informative animals from one generation. Consideration of genotype information as a fixed effect in the model resulted in overestimation of polygenic heritability of the QTL trait, but increased accuracy of estimated additive genetic correlations of the QTL trait.

Conclusion

Combined use of phenotype and genotype information on parents and offspring will help to identify agonistic and antagonistic genetic correlations between traits of interests, facilitating design of effective multiple trait selection schemes.  相似文献   

16.
A genome-wide association study of seed protein and oil content in soybean   总被引:8,自引:0,他引:8  

Background

Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content.

Results

A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil.

Conclusions

This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).  相似文献   

17.

Background

Breeding for enhanced immune response (IR) has been suggested as a tool to improve inherent animal health. Dairy cows with superior antibody-mediated (AMIR) and cell-mediated immune responses (CMIR) have been demonstrated to have a lower occurrence of many diseases including mastitis. Adaptive immune response traits are heritable, and it is, therefore, possible to breed for improved IR, decreasing the occurrence of disease. The objective of this study was to perform genome-wide association studies to determine differences in genetic profiles among Holstein cows classified as High or Low for AMIR and CMIR. From a total of 680 cows with immune response phenotypes, 163 cows for AMIR (81 High and 82 Low) and 140 for CMIR (75 High and 65 Low) were selectively genotyped using the Illumina Bovine SNP50 BeadChip. Results were validated using an unrelated population of 164 Holstein bulls IR phenotyped for AMIR and 146 for CMIR.

Results

A generalized quasi likelihood score method was used to determine single nucleotide polymorphisms (SNP) and chromosomal regions associated with immune response. After applying a 5% chromosomal false discovery rate, 186 SNPs were significantly associated with AMIR. The majority (93%) of significant markers were on chromosome 23, with a similar peak found in the bull population. For CMIR, 21 SNP markers remained significant. Candidate genes within 250,000 base pairs of significant SNPs were identified to determine biological pathways associated with AMIR and CMIR. Various pathways were identified, including the antigen processing and presentation pathway, important in host defense. Candidate genes included those within the bovine Major Histocompatability Complex such as BoLA-DQ, BoLA-DR and the non-classical BoLA-NC1 for AMIR and BoLA-DQ for CMIR, the complement system including C2 and C4 for AMIR and C1q for CMIR, and cytokines including IL-17A, IL17F for AMIR and IL-17RA for CMIR and tumor necrosis factor for both AMIR and CMIR. Additional genes associated with CMIR included galectins 1, 2 and 3, BCL2 and β-defensin.

Conclusions

The significant genetic variation associated with AMIR and CMIR in this study may imply feasibility to include immune response in genomic breeding indices as an approach to improve inherent animal health.  相似文献   

18.
Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10(-15) in the initial sample, p = 6.58 × 10(-39) in the second genome-wide sample, and p = 2.12 × 10(-32) in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10(-83). The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10(-58)) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults.  相似文献   

19.

Objective

The aim of this study was to identify the candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms that contribute to schizophrenia susceptibility and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach.

Methods

We used schizophrenia GWAS data of the genotypes of 660,259 SNPs in 1378 controls and 1351 cases of European descent after quality control filtering. ICSNPathway (Identify candidate Causal SNPs and Pathways) analysis was applied to the schizophrenia GWAS dataset. The first stage involved the pre-selection of candidate SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate SNPs using improved-gene set enrichment analysis.

Results

ICSNPathway analysis identified fifteen candidate SNPs, ten candidate pathways, and nine hypothetical biological mechanisms. The most strongly associated potential pathways were as follows. First, rs1644731 and rs1644730 to RDH8 to estrogen biosynthetic process (p < 0.001, FDR < 0.001). The genes involved in this pathway are RDH8 and HSD3B1 (p < 0.05). All-trans-retinol dehydrogenase (RDH8) is a visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol in the presence of NADPH. The chemical reactions and pathways involved result in the formation of estrogens, which are C18 steroid hormones that can stimulate the development of female sexual characteristics. Second, rs1146031 to ACVR1 to mesoderm formation and activin binding (p < 0.001, FDR = 0.032, 0.034). Two of 15 candidate genes are known genes associated with schizophrenia: KCNQ2 and APOL2. One of the 10 candidate pathways, estrogen biosynthetic process, is known to be associated with schizophrenia (p < 0.001, FDR < 0.001). However, 13 of candidate genes (RDH8, ACVR1, PSMD9, KCNAB1, SLC17A3, ARCN1, COG7, STAB2, LRPAP1, STAB1, CXCL16, COL4A4, EXOSC3) and 9 of candidate pathways were novel.

Conclusion

By applying ICSNPathway analysis to schizophrenia GWAS data, we identified candidate SNPs, genes like KCNQ2 and APOL2 and pathways involving the estrogen biosynthetic process may contribute to schizophrenia susceptibility. Further analyses are needed to validate the results of this analysis.  相似文献   

20.
全基因组关联研究中的交互作用研究现状   总被引:2,自引:0,他引:2  
Li FG  Wang ZP  Hu G  Li H 《遗传》2011,33(9):901-910
利用高密度单核苷酸多态(Single nucleotide polymorphism,SNP)标记在全基因组范围内检测影响复杂疾病/性状的染色体区段或基因,已经成为目前遗传学领域新的突破点之一。在全基因组关联研究(Genome-wide association study,GWAS)取得大量成果之后,研究者们对在全基因范围内研究交互作用产生了极大的热情。近几年,对交互作用的研究,无论是在方法的研发、实际的应用以及统计学上的交互向生物学上的交互转化,还是在信息组学的整合,都呈现快速发展的趋势。已有很多策略和方法被尝试用于进行全基因组交互作用分析,这些研究推动了对复杂疾病/性状遗传机制的进一步认识。基于目前全基因组交互分析所采用的各类数据处理方法的理论与算法的异同,文章拟对目前使用较为广泛的回归类方法、机器学习方法、贝叶斯模型法、SNP筛选类方法和基于并行程序的方法等5类方法加以评述,着重介绍了这些方法的算法原理、计算效率以及差别之处,以期能够为相关领域的研究者提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号