首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the construction in retroviral vectors and the expression of recombinant rat fibronectin (FN) cDNAs corresponding with the various alternatively spliced forms of FN. In NIH 3T3 cells, the exogenous rat FN subunits are efficiently secreted as heterodimers with endogenous mouse subunits. In contrast, in lymphoid WEHI231 cells, there is no endogenous FN synthesis and the recombinant FNs are secreted and can be purified as homogeneous proteins. We show that the purified recombinant FNs are biochemically and biologically functional. In basic assays for adhesion, spreading, cytoskeletal organization, and migration using various established adherent cell lines, different forms of FNs containing the different alternatively spliced segments show no marked differences in activity. We have used these recombinant FNs to investigate three systems in which earlier results had suggested potential differences between different forms of FN. First, all forms tested appear equally active in restoring normal morphology to a transformed cell line. Second, we detect minor differences in their ability to assemble into preexisting extracellular matrices. Finally, we report that only those forms of FN that contain the V segment will promote the spreading of a lymphoid cell line indicating that this segment confers additional biological functions for some cell types, a result that confirms and extends earlier data. These homogeneous, biologically active recombinant FNs will allow further studies of the role of the alternatively spliced segments of FN.  相似文献   

2.
3.
Two previously reported insulin receptor cDNA sequences differ by 36 base pairs (bp) in the distal alpha-subunit, suggesting that alternative mRNA splicing within the coding region may occur (two insulin receptor isoforms). We developed a quantitative modification of the polymerase chain reaction technique in order to detect and characterize differential mRNA splicing at this site within the distal alpha-subunit. Using RNA derived from a variety of human cell types, we detected two polymerase chain reaction-amplified cDNA species reflecting the presence or absence of the above 36 nucleotides. Identity of the two cDNA species was confirmed by Southern blots, the use of a BANI restriction site present only in the 36 base pair segment and dideoxy sequencing. The relative expression of the two mRNA forms varied markedly in a tissue-specific manner. Buffy coat leukocytes and Epstein-Barr virus-transformed lymphocytes express only the shorter mRNA. Placenta expresses both species equally; muscle, isolated adipocytes and cultured fibroblasts express somewhat more of the longer mRNA (relative ratios of mRNA abundance of 1.51, 3.18, and 2.77, respectively); liver expresses mostly the longer mRNA (relative ratio of 9.8). In RNA derived from cultured and fresh cells from patients with several states of insulin resistance, the relative expression of the two mRNA species was similar to results obtained with comparable normal tissues. Although the functional significance of alternative splicing of the insulin receptor mRNA is unknown, differential expression of these two receptor mRNAs may provide a structural basis for previously observed tissue-specific differences in insulin binding and action.  相似文献   

4.
5.
6.
Responses of the rat liver prekininogen mRNAs after induction of acute inflammation were examined by blot-hybridization and S1 nuclease protection analyses with the aid of cDNA probes specific for rat kininogens. Marked changes in the relative levels of the low molecular weight (LMW) prekininogen mRNAs were observed after administration of Escherichia coli lipopolysaccharide, and the mRNA levels increased with a half-maximal dose of approximately 100 ng of lipopolysaccharide/100 g body weight. At maximum level of induction, the LMW prekininogen mRNAs comprised about 1% of total liver mRNA, thus representing a major component of the liver mRNA in the acutely inflamed rat. Differences in the inflammatory responses of various forms of the prekininogen mRNAs were then investigated by S1 nuclease protection analysis with the use of three different cDNA probes, each specific for either K-prekininogen or two types of T-prekininogens. Both of the T-prekininogen mRNAs increased progressively during the first 24 h after induction of inflammation, and at maximum level of induction, these two mRNAs increased about 10- and 13-fold over their normal level. In contrast, neither of the high molecular weight and LMW K-prekininogen mRNAs exhibited such an increase after induction of inflammation. Thus, the expressions of the rat T- and K-prekininogen mRNAs are differentially regulated in response to the induction of acute inflammation.  相似文献   

7.
8.
Fibroblast growth factors (FGFs) 11–14 comprise a subfamily of FGFs with poorly defined biological function. Here we characterize two isoforms of FGF14 (FGF14-1a and FGF14-1b) that result from the alternative usage of two different first exons. We demonstrate that these isoforms have differential subcellular localization and that they are differentially expressed in various adult tissues. Using in situ hybridization we show that Fgf14 is widely expressed in brain, spinal cord, major arteries and thymus between 12.5 and 14.5 days of mouse embryonic development. We also show that during cerebellar development, Fgf14 is first observed at postnatal day 1 in post mitotic granule cells, and later in development, in migrating and post migratory granule cells. The developmental expression pattern of Fgf14 in the cerebellum is complementary to that of Math1, a marker for proliferating granule cells in the external germinal layer.  相似文献   

9.
10.
11.
12.
13.
MOTIVATION: Computational gene prediction methods are an important component of whole genome analyses. While ab initio gene finders have demonstrated major improvements in accuracy, the most reliable methods are evidence-based gene predictors. These algorithms can rely on several different sources of evidence including predictions from multiple ab initio gene finders, matches to known proteins, sequence conservation and partial cDNAs to predict the final product. Despite the success of these algorithms, prediction of complete gene structures, especially for alternatively spliced products, remains a difficult task. RESULTS: LOCUS (Length Optimized Characterization of Unknown Spliceforms) is a new evidence-based gene finding algorithm which integrates a length-constraint into a dynamic programming-based framework for prediction of gene products. On a Caenorhabditis elegans test set of alternatively spliced internal exons, its performance exceeds that of current ab initio gene finders and in most cases can accurately predict the correct form of all the alternative products. As the length information used by the algorithm can be obtained in a high-throughput fashion, we propose that integration of such information into a gene-prediction pipeline is feasible and doing so may improve our ability to fully characterize the complete set of mRNAs for a genome. AVAILABILITY: LOCUS is available from http://ural.wustl.edu/software.html  相似文献   

14.
Exons IIIb and IIIc of the FGFR2 gene are alternatively spliced in a mutually exclusive manner in different cell types. A switch from expression of FGFR2IIIb to FGFR2IIIc accompanies the transition of nonmalignant rat prostate tumor epithelial cells (DTE) to cells comprising malignant AT3 tumors. Here we used transfection of minigenes with and without alterations in reading frame and with and without introns to examine how translation affects observed FGFR2 splice products. We observed that nonsense mutations in other than the last exon led to a dramatic reduction in mRNA that is abrogated by removal of downstream introns in both DTE and AT3 cells. The mRNA, devoid of both IIIb and IIIc exons (C1-C2), is a major splice product from minigenes lacking an intron downstream of the second common exon C2. From these observations, we suggest that repression of exon IIIc and activation of exon IIIb inclusion in DTE cells lead to the generation of both C1-IIIb-C2 and C1-C2 products. However, the C1-C2 product from the native gene is degraded due to a frameshift and a premature termination codon caused by splicing C1 and C2 together. Derepression of exon IIIc and repression of exon IIIb lead to the generation of both C1-IIIc-C2 and C1-C2 products in AT3 cells, but the C1-C2 product is degraded. The C1-IIIb-IIIc-C2 mRNA containing a premature termination codon in exon IIIc was present, but at apparently trace levels in both cell types. The nonsense-mediated mRNA decay pathway and cell type-dependent rates of inclusion of exons IIIb and IIIc result in the mutually exclusive expression of FGFR2IIIb and IIIc.  相似文献   

15.
16.
We have cloned and sequenced the 5' and 3' ends of the Drosophila homolog of the vertebrate c-ret gene, Ret, and have derived from it the predicted protein sequence of Ret. The extracellular domain of Ret is very widely diverged from that of its vertebrate counterparts but the cadherin motif present in vertebrate c-ret proteins can also be discerned in Ret. As with the vertebrate gene, multiple splice variants were detected at the 5'-end of Ret, one of which inserts an exon with a protein-terminating frameshift into the cDNA. In contrast to human c-ret, which may vary its signalling specificity by using splicing-derived, alternative C-terminal sequences, Ret cDNAs showed no variation at their 3'-ends.  相似文献   

17.
A unique feature of the Toxoplasma gondii purine salvage pathway is the expression of two isoforms of the hypoxanthine-xanthine-guanine phosophoribosyltransferase (HXGPRT) of the parasite encoded by a single genetic locus. These isoforms differ in the presence or absence of a 49-amino acid insertion (which is specified by a single differentially spliced exon) but exhibit similar substrate specificity, kinetic characteristics, and temporal expression patterns. To examine possible functional differences between the two HXGPRT isoforms, fluorescent protein fusions were expressed in parasites lacking the endogenous hxgprt gene. Immunoblot analysis of fractionated cell extracts and fluorescence microscopy indicated that HXGPRT-I (which lacks the 49-amino acid insertion) is found in the cytosol, whereas HXGPRT-II (which contains the insertion) localizes to the inner membrane complex (IMC) of the parasite. Simultaneous expression of both isoforms resulted in the formation of hetero-oligomers, which distributed between the cytosol and IMC. Chimeric constructs expressing N-terminal peptides from either isoform I (11 amino acids) or isoform II (60 amino acids) fused to a chloramphenicol acetyl transferase (CAT) reporter demonstrated that the N-terminal domain of isoform II is both necessary and sufficient for membrane association. Metabolic labeling experiments with transgenic parasites showed that isoform II or an isoform II-CAT fusion protein (but not isoform I or isoform I-CAT) incorporate [(3)H]palmitate. Mutation of three adjacent cysteine residues within the isoform II-targeting domain to serines blocked both palmitate incorporation and IMC attachment without affecting enzyme activity, demonstrating that acylation of N-terminal isoform II cysteine residues is responsible for the association of HXGPRT-II with the IMC.  相似文献   

18.
It has been reported that preimplantation human embryos secrete HLA-G, and the levels may be predictive of their ability to implant. However, it is not known which of the membrane-bound (HLA-G 1-4) and soluble (HLA-G 5-6) alternatively spliced forms are present, nor the developmental stage at which they appear. Therefore, we have investigated HLA-G mRNA isoform expression on single embryos at the two-, four-, six-, and eight-cell, morula, and blastocyst stages. The percentage of embryos expressing each HLA-G isoform mRNA increased with developmental stage, but contrary to expectation, HLA-G5 mRNA was not detected in single two- to eight-cell embryos and was only expressed by 20% of morulae and blastocysts. Similarly, soluble HLA-G6 mRNA was not detected until the blastocyst stage and then in only one-third of embryos. In contrast, labeling with MEM G/9 Ab (specific for HLA-G1 and -G5) was observed in 15 of 20 two- to eight-cell embryos and 5 of 5 blastocysts. This disparity between mRNA and protein may be due to HLA-G protein remaining from maternal oocyte stores produced before embryonic genome activation and brings into question the measurement of soluble HLA-G for clinical evaluation of embryo quality. Although HLA-G is expressed in the preimplantation embryo, later it is primarily expressed in the invasive trophoblast of the placenta rather than the fetus. Therefore, we have investigated whether down-regulation of HLA-G first occurs in the inner cell mass (precursor fetal cells) of the blastocyst and, in support of this concept, have shown the absence HLA-G1 and -G5 protein and mRNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号