首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Conidia of Penicillium urticae were immobilized in Kappa-Carrageenan beads (2–3 mm) by a previously described procedure to yield an in situ grown immobilized cell population which could be induced to produce the antibiotic and mycotoxin, patulin. When repeatedly transferred into a nitrogen-free production medium every 2 days, the patulin productivity of these cells gradually decreased to 50% within 14 days while the total cell protein remained constant. This decline was due to the gradual loss of the cells' catalytic capacity for converting glucose to 6-methylsalicylic acid (6-MSA), the first metabolite of the patulin pathway, as well as for converting 6-MSA to patulin. When these 14 day-old cells were incubated in a nutrient rich growth medium for 2 days their patulin producing activity increased from 50% to 130%. On the other hand the addition of a protein synthesis inhibitor, cycloheximide, to the N-free production medium drastically reduced the patulin producing activity of the immobilized cells; in particular, their capacity for converting 6-MSA to patulin. The cells' patulin producing activity was maintained at >100% for longer than 15 days when the cells were repeatedly transferred into a yeast extract supplemented production medium or when they were occasionally transferred into 10 or 20% strength growth medium. Repeated transfers to a 10% strength growth medium appeared to stabilize the cells' capacity for converting 6-MSA to patulin.  相似文献   

2.
The effect of trace metal nutrition on the functioning of the patulin biosynthetic pathway in submerged cultures of Penicillium urticae (NRRL 2159A) was examined by both chromatographic and enzymological means. Comprehensive metal ion analysis showed generally low levels of contaminating metal ions in media components. Of eight metal ions examined, only manganese strongly influenced secondary metabolite production. In control cultures or cultures deficient in calcium, iron, cobalt, copper, zinc, or molybdenum, pathway metabolites appeared in the medium at about 25 h after inoculation. The first pathway-specific metabolite, 6-methylsalicylic acid, accumulated only transiently before being converted to patulin whose concentration steadily increased. In manganese-deficient cultures, however, 6-methylsalicylic acid continued to accumulate, with only minor amounts of patulin being produced. Additionally, a marker enzyme for the pathway showed only 0-20% of control activity. Clear dose responses (patulin versus manganese) were found in different media, with no effect on growth yield. Addition of manganese to depleted cultures at 18, 26, or 36 h resulted in increasing marker enzyme activity and patulin concentrations. It is concluded that manganese exerts a specific, positive effect on patulin biosynthesis and may in some way control the section of the patulin pathway occurring after 6-methylsalicylic acid.  相似文献   

3.
Bacterial bioluminescence as a bioassay for mycotoxins.   总被引:3,自引:0,他引:3       下载免费PDF全文
The use of bacterial bioluminescence as a toxicological assay for mycotoxins was tested with rubratoxin B, zearalenone, penicillic acid, citrinin, ochratoxin A, PR-toxin, aflatoxin B1, and patulin. The concentrations of mycotoxins causing 50% light reduction (EC50) in Photobacterium phosphoreum were determined immediately and at 5 h after reconstitution of the bacteria from a freeze-dried state. Generally, less toxins were required to obtain an EC50 at 5 h. The effects of the above mycotoxins on bioluminescence were determined after 5, 10, 15, and 20 min of incubation with the bacterial suspensions. The concentration of rubratoxin B necessary to elicit an EC50 increased with time, whereas the concentration of citrinin, penicillic acid, patulin, and PR-toxin necessary decreased with time. There was very little change in the concentration of zearalenone, aflatoxin B1, and ochratoxin A required to elicit an EC50 with time. The bacterial bioluminescence assay was most sensitive to patulin and least sensitive to rubratoxin B.  相似文献   

4.
In recent yearsAspergillus flavus and aflatoxin production have been noted on several occasions in grain preserved with formic acid. Samples of mouldy barley treated with formic acid and stored in an open bin were investigated for the presence of fungi. In the lower part of the bin there was a clear dominance ofFusarium sporotrichioides, and deoxynivalenol and neosolaniol were detected.A. flavus andA. fumigatus were also present.Paecilomyces variotii occurred, almost as a pure culture, in the upper part of the bin, but no patulin was found. Cultivation of four fungal isolates from these genera on laboratory substrates containing formic acid showedP. variotii to be the most tolerant to formic acid, withstanding 150 mM, but still without patulin production.F. sporotrichioides andA. fumigatus tolerated only 6 mM formic acid. The growth ofA. flavus was reduced and atypical at 60 mM formic acid. Pretreatment ofA. flavus spores with formic acid increased aflatoxin production about 800 times.  相似文献   

5.
Patulin exhibits both cytotoxic and cytopathic effects on cultured Chang liver cells. The LD50 found was 1.85 mug per ml of patulin. Effects on growth were observed with as little as 0.1 mug per ml of patulin; a 50% reduction in growth was observed at 0.38 mug per ml of patulin. Using a challenge dose of 2.5 mug per ml of patulin, the cytotoxic effect was reversible after an exposure of 10 min, but was not reversible after 20 min. Protein synthesis was depressed after 60 min and RNA synthesis after 20 min of contact with patulin. Neither protein nor RNA synthesis was completely inhibited after 260 min.  相似文献   

6.
The taxonomy of the asymmetric (predominantly terverticillate) penicillia is based on morphological differences that leave identification difficult. The application of physiological criteria facilitated the identification of the common asymmetric penicillia investigated. Changes in the placement of some strains of these penicillia made the connection to mycotoxin-producing ability clearer. The classical criterion of conidium color was deemphasized and replaced by the following criteria: (i) growth on nitrite-sucrose agar and (ii) growth and acid (and subsequent base) production on creatine-sucrose agar (containing bromocresol purple). Other criteria used or developed were: (iii) growth on sorbic acid plus benzoic acid agar (50 + 50 ppm, pH 3.8), (iv) growth on an agar containing 1,000 ppm propionic acid (pH 3.8), (v) growth on an agar containing 0.5% acetic acid, (vi) growth at 37 degrees C, (vii) growth rate on an agar containing 0.1% pentachloronitrobenzene, (viii) production of extracellular tricaproinase, and (ix) fasciculation on a medium containing 10 ppm botran (2,6-dichloro-4-nitroanilin). The pattern of extracellular metabolites after thin-layer chromatography was used as a chemotaxonomic criterion. The species investigated, the number of isolates investigated, and the toxins which some of these isolates produce were: Penicillium roqueforti (18) (patulin), P. citrinum (11) (citrinin), P. patulum (9) (patulin and griseofulvin), P. expansum (patulin and citrinin), P. hirsutum (13), P. brevicompactum (19), and P. chrysogenum (12). Widespread species of the P. cyclopium, P. viridicatum, and P. expansum series of Raper and Thom (A Manual of the Penicillia, 1949) were subdivided into four new groups: "P. crustosum pA" (29) (penitrem A), "P. melanochlorum" (29), "P. cyclopium p" (119) (penicillic acid and infrequently penitrem A), and "P. viridicatum o-c" (43) (ochratoxin A and citrinin). "P. viridicatum o-c" was separated from "P. cyclopium p" due to its ability to grow on nitrite as sole nitrogen source. The species and groups investigated were related to the new taxonomic classification of the genus Penicillium according to Pitt.  相似文献   

7.
Enzyme-catalyzed synthesis of methyl benzoate is reported. It is the first example of direct esterification of benzoic acid which provides good yields. The reaction was performed in a heterogeneous medium by Candida rugosa lipase powder suspended in a hexane/toluene mixture. The impact of some factors was examined. Benzoic acid does not inhibit the lipase until 100 mM. Above 90 mM, methanol inhibits the enzyme. This inhibition is partially eliminated by increasing benzoic acid concentration. Below 90 mM, methanol mainly interacts with the water adsorbed on the biocatalyst. A minimum water content is necessary to activate the biocatalyst. Water must be provided proportionally to the lipase content. Toluene, necessary for benzoic acid solubilization, also acts negatively on reaction kinetics. This is attributed to a modification of benzoic acid partition between the biocatalytic and the organic phases. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

8.
A comparative metabolomic analysis was conducted on Saccharomyces cerevisiae cells with and without patulin treatment using gas chromatography–mass spectrometry-based approach. A total of 72 metabolites were detected and compared, including 16 amino acids, 29 organic acids and alcohols, 19 sugars and sugar alcohols, 2 nucleotides, and 6 miscellaneous compounds. Principle component analysis showed a clear separation of metabolome between the cells with and without patulin treatment, and most of the identified metabolites contributed to the separation. A close examination of the identified metabolites showed an increased level of most of the free amino acids, an increased level of the intermediates in the tricarboxylic acid cycle, a higher amount of glycerol, a changed fatty acid composition, and a decreased level of cysteine and glutathione in the cells with patulin treatment. This finding indicated a slower protein synthesis rate and induced oxidative stress in the cells with patulin treatment, and provided new insights into the effect of toxic chemicals on the metabolism of organisms.  相似文献   

9.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

10.
The cytotoxicity, cellular cholesterol synthesis, and secretion of allyl mercaptan, a major metabolite of garlic compounds, were studied in Hep-G2 cells. The cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and treated with 5, 25, 50, 100, 125, 250, and 500 microg of allyl mercaptan/mL for 4, 12, and 24 hours. At concentrations up to 125 microg, no significant cytotoxic effect was noted during those incubation periods. However, at a concentration of 250 microg, cell viability decreased approximately 50% compared with the control (P < 0.05) in all three incubation times. At a concentration of 500 microg, allyl mercaptan was highly toxic, causing extensive cell death. The treatment of cells with 5, 10, 25, 50, or 100 microg (noncytotoxic concentration) of allyl mercaptan resulted in a marked inhibition of (3)H-acetate incorporation into cholesterol. At concentrations between 5 and 100 microg, the cholesterol synthesis was inhibited 20 to 80% in cells and the cholesterol secretion into the medium decreased 20 to 50% compared with the control (P < 0.05). The concentration of allyl mercaptan required to suppress cholesterol synthesis by 50% was approximately 25 microg/mL. Allyl mercaptan treatment of cells incubated with 1 mM of oleic acid also resulted in a significant decrease in the cholesterol synthesis compared with the cells incubated with oleic acid alone (19.5 +/- 1.2 x 10(3) dpm/mg protein/4 h vs. 30.0 +/- 2.6 x 10(3) dpm/mg protein/4 h; P < 0.05). The present study demonstrates that allyl mercaptan is effective in inhibiting cholesterol synthesis at concentrations as low as 5 microg, and its inhibition is concentration dependent.  相似文献   

11.
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

12.
The toxicities of patulin and of the patulin adducts formed with cysteine were compared using the mutation-sensitive strain Escherichia coli W3110 thy polA1 and its polA1+ revertant. The acute toxicities of patulin and of the adduct mixture were also compared using NMRI mice. The adduct mixture was shown by thin-layer chromatography to consist of one ninhydrin-positive, one ninhydrin- and MBTH (3-methyl-2-benzothiazolinone hydrazone)-positive, three MBTH-positive, and two ninhydrin- and MBTH-negative components. The results showed that patulin was over 100 times more toxic to E. coli than the adduct complex. Neither patulin nor the adduct mixture was found to induce the repair effect in E. coli. In the mouse feeding tests, the oral 50% lethal dose for patulin was 29 mg/kg, while that of the adduct mixture was greater than 2,370 mg/kg.  相似文献   

13.
The toxicities of patulin and of the patulin adducts formed with cysteine were compared using the mutation-sensitive strain Escherichia coli W3110 thy polA1 and its polA1+ revertant. The acute toxicities of patulin and of the adduct mixture were also compared using NMRI mice. The adduct mixture was shown by thin-layer chromatography to consist of one ninhydrin-positive, one ninhydrin- and MBTH (3-methyl-2-benzothiazolinone hydrazone)-positive, three MBTH-positive, and two ninhydrin- and MBTH-negative components. The results showed that patulin was over 100 times more toxic to E. coli than the adduct complex. Neither patulin nor the adduct mixture was found to induce the repair effect in E. coli. In the mouse feeding tests, the oral 50% lethal dose for patulin was 29 mg/kg, while that of the adduct mixture was greater than 2,370 mg/kg.  相似文献   

14.
The combination of the concentration of formic acid and the duration of fumigation (CT product) during indoor treatments of honey bee, Apis mellifera L., colonies to control the varroa mite, Varroa destructor Anderson & Trueman, determines the efficacy of the treatment. Because high concentrations can cause queen mortality, we hypothesized that a high CT product given as a low concentration over a long exposure time rather than as a high concentration over a short exposure time would allow effective control of varroa mites without the detrimental effects on queens. The objective of this study was to assess different combinations of formic acid concentration and exposure time with similar CT products in controlling varroa mites while minimizing the effect on worker and queen honey bees. Treated colonies were exposed to a low, medium, or high concentration of formic acid until a mean CT product of 471 ppm*d in room air was realized. The treatments consisted of a long-term low concentration of 19 ppm for 27 d, a medium-term medium concentration of 42 ppm for 10 d, a short-term high concentration of 53 ppm for 9 d, and an untreated control. Both short-term high-concentration and medium-term medium-concentration fumigation with formic acid killed varroa mites, with averages of 93 and 83% mortality, respectively, but both treatments also were associated with an increase in mortality of worker bees, queen bees, or both. Long-term low-concentration fumigation had lower efficacy (60% varroa mite mortality), but it did not increase worker or queen bee mortality. This trend differed slightly in colonies from two different beekeepers. Varroa mite mean abundance was significantly decreased in all three acid treatments relative to the control. Daily worker mortality was significantly increased by the short-term high concentration treatment, which was reflected by a decrease in the size of the worker population, but not an increase in colony mortality. Queen mortality was significantly greater under the medium-term medium concentration and the short-term high concentration treatments than in controls.  相似文献   

15.
This study presents a novel methodology for the development of a chemically defined medium (CDM) using genome-scale metabolic network and flux balance analysis. The genome-based in silico analysis identified two amino acids and four vitamins as non-substitutable essential compounds to be supplemented to a minimal medium for the sustainable growth of Mannheimia succiniciproducens, while no substitutable essential compounds were identified. The in silico predictions were verified by cultivating the cells on a CDM containing the six non-substitutable essential compounds, and it was further demonstrated by observing no cell growth on the CDM lacking any one of the non-substitutable essentials. An optimal CDM for the enhancement of cell growth and succinic acid production, as a target product, was formulated with a single-addition technique. The fermentation on the optimal CDM increased the succinic acid productivity by 36%, the final succinic acid concentration by 17%, and the succinic acid yield on glucose by 15% compared to the cultivation using a complex medium. The optimal CDM also lowered the sum of the amounts of by-products (acetic, formic, and lactic acids) by 30%. The strategy reported in this paper should be generally applicable to the development of CDMs for other organisms, whose genome sequences are available.  相似文献   

16.
The chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus test (MN) were employed to investigate the in vitro effect of antimicrobial food additive benzoic acid on human chromosomes. Lymphocytes were incubated with various concentrations (50, 100, 200 and 500 μg/mL) of benzoic acid. The results of used assays showed that benzoic acid significantly increased the chromosomal aberration, sister chromatid exchange and micronucleus frequency (200 and 500 μg/mL) without changing the pH of the medium in a dose-dependent manner. Also this additive significantly decreased the mitotic index (MI) at the highest concentration for 24 h and 100, 200 and 500 μg/mL for 48 h. This decrease was dose-dependent as well. However, it did not effect the replication (RI) and nuclear division (NDI) indices.  相似文献   

17.
Replication of the 50 and 58 moles per cent guanine plus cytosine (%GC) components of R factor 222 in Proteus mirabilis during growth in the presence and absence of chloramphenicol and after shifting exponential- and stationary-phase cells to conditions which inhibit host protein or deoxyribonucleic acid (DNA) synthesis was examined. Chloramphenicol reduced the growth rate but increased the amount of both R-factor components; the 58% GC component showed a larger proportionate increase. This was inferred to indicate reduced synthesis of an inhibitor that acts on both R-factor components and an initiator for replication of the 50% GC component. Replicative patterns observed after shifting exponential- and stationary-phase cells grown with or without chloramphenicol to minimal medium or chloramphenicol for one generation, or puromycin for 3 hr, corroborated this interpretation. After shifts of exponential cells from either medium, replication of the 50% GC components paralleled host replication, thus indicating a requirement for protein synthesis; replication of the 58% GC component increased due to reduced inhibitor synthesis. R-factor DNA remained constant after shifting stationary cells from drug-free medium, thus indicating that the cells contained effective concentrations of the regulatory inhibitor, whereas increased replication of the 58% GC component occurred after identical shifts of chloramphenicol-grown cells of the same chronological age. Similar responses were observed after shifts to 5 C or to medium containing streptomycin or tetracycline. Absence of replication of the 50% GC component after shifting to medium containing nalidixic acid or phenethanol and its hereditary persistence during growth indicated that the 50% GC replicon was attached to the membrane. Thus, in P. mirabilis the three replicons of R factor 222 are regulated as follows: The composite and transfer portion (RTF) replicons represented by the 50% GC component require protein synthesis and membrane attachment and are negatively regulated by an inhibitor; the 58% GC or resistance-determinants replicon exists cytoplasmically and is subject only to negative control.  相似文献   

18.
This study examined the production of com silages with low or high lactic acid concentrations, provided by the addition of formic acid (0.5%), molasses (5%) or microbial inoculant (homofermentative lactic acid bacteria, 10 g/tonne). After the fermentation period, sheep were fed the silages to determine true and apparent digestibility of the organic matter and microbial protein synthesis. The experiment were carried out with four KıvırcıkxMorkaraman sheep, 1.5 years old, fixed with cannula in their rumen and duodenum.Lactic acid concentrations were significantly higher in silages treated with enzyme or molasses compared to other specific treatments. Acetic acid concentration was highest in silage treated with formic acid, and lowest in silage treated with molasses (P < 0.05). The by-pass of crude protein was highest in silage treated with formic acid.  相似文献   

19.
The fate of benzoic acid in various species   总被引:4,自引:2,他引:2       下载免费PDF全文
1. The urinary excretion of orally administered [14C]benzoic acid in man and 20 other species of animal was examined. 2. At a dose of 50mg/kg, benzoic acid was excreted by the rodents (rat, mouse, guinea pig, golden hamster, steppe lemming and gerbil), the rabbit, the cat and the capuchin monkey almost entirely as hippuric acid (95–100% of 24h excretion). 3. In man at a dose of 1mg/kg and the rhesus monkey at 20mg/kg benzoic acid was excreted entirely as hippuric acid. 4. At 50mg/kg benzoic acid was excreted as hippuric acid to the extent of about 80% of the 24h excretion in the squirrel monkey, pig, dog, ferret, hedgehog and pigeon, the other 20% being found as benzoyl glucuronide and benzoic acid, the latter possibly arising by decomposition of the former. 5. On increasing the dose of benzoic acid to 200mg/kg in the ferret, the proportion of benzoyl glucuronide excreted increased and that of hippuric acid decreased. This did not occur in the rabbit, which excreted 200mg/kg almost entirely as hippuric acid. It appears that the hedgehog and ferret are like the dog in respect to their metabolism of benzoic acid. 6. The Indian fruit bat produced only traces of hippuric acid and possibly has a defect in the glycine conjugation of benzoic acid. The main metabolite in this animal (dose 50mg/kg) was benzoyl glucuronide. 7. The chicken, side-necked turtle and gecko converted benzoic acid mainly into ornithuric acid, but all three species also excreted smaller amounts of hippuric acid.  相似文献   

20.
Formic acid treatment for the control of the ectoparasitic varroa mite, Varroa destructor Anderson & Trueman, infesting honey bee, Apis mellifera L., colonies is usually carried out as an in-hive outdoor treatment. This study examined the use of formic acid on wintered colonies kept indoors at 5 degrees C from 24 November 1999 to 24 March 2000. Colonies were placed in small treatment rooms that were not treated (control) or fumigated at three different concentrations of formic acid: low (mean 11.9 +/- 1.2 ppm), medium (mean 25.8 +/- 1.4 ppm), or high (mean 41.2 +/- 3.3 ppm), for 48 h on 22-24 January 2000. Queen bee, worker bee, and varroa mite mortality were monitored throughout the winter, and tracheal mite, Acarapis woodi (Rennie), prevalence and mean abundance of nosema, Nosema apis Zander, spores were assessed. This study revealed that formic acid fumigation of indoor-wintered honey bees is feasible and effective. The highest concentration significantly reduced the mean abundance of varroa mites and nosema spores without increasing bee mortality. Tracheal mite prevalence did not change significantly at any concentration, although we did not measure mortality directly. The highest concentration treatment killed 33.3% of queens compared with 4.8% loss in the control. Repeated fumigation periods at high concentrations or extended fumigation at low concentrations may increase the efficacy of this treatment method and should be tested in future studies. An understanding of the cause of queen loss and methods to prevent it must be developed for this method to be generally accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号