首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and characterization of bio-diesels from various bio-oils   总被引:19,自引:0,他引:19  
Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.  相似文献   

2.
Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The (1)H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel.  相似文献   

3.
Fatty acids esters were produced from two Nigerian lauric oils, palm kernel oil and coconut oil, by transesterification of the oils with different alcohols using PS30 lipase as a catalyst. In the conversion of palm kernel oil to alkyl esters (biodiesel), ethanol gave the highest conversion of 72%, t-butanol 62%, 1-butanol 42%, n-propanol 42% and iso-propanol 24%, while only 15% methyl ester was observed with methanol. With coconut oil, 1-butanol and iso-butanol achieved 40% conversion, 1-propanol 16% and ethanol 35%, while only traces of methyl esters were observed using methanol. Studies on some fuel properties of palm kernel oil and its biodiesel showed that palm kernel oil had a viscosity of 32.40 mm2/s, a cloud point of 28 degrees C and a pour point of 22 degrees C, while its biodiesel fuel had a viscosity of 9.33 mm2/s, a cloud point of 12 degrees C and a pour point of 8 degrees C. Coconut oil had a viscosity of 28.58 mm(2)/s, a cloud point of 27 degrees C and a pour point of 20 degrees C, while its biodiesel fuel had a viscosity of 7.34 mm2/s, a cloud point of 5 degrees C and a pour point of -8 degrees C. Some of the fuel properties compared favourably with international biodiesel specifications.  相似文献   

4.
Trans-esterification of four vegetable oils; canola oil, greenseed canola oil from heat-damaged seeds, processed waste fryer grease and unprocessed waste fryer grease, was carried out using methanol, and KOH as catalyst. The methyl esters of the corresponding oils were separated from the crude glycerol, purified, and characterized by various methods to evaluate their densities, viscosities, iodine values, acid numbers, cloud points, pour points and gross heat of combustion, fatty acid and lipid compositions, lubricity properties, and thermal properties. The fatty acid composition suggests that 80-85% of the ester was from unsaturated acids. Substantial decrease in density and viscosity of the methyl esters compared to their corresponding oils suggested that the oils were in their mono or di glyceride form. The lubricity of the methyl esters, when blended at 1 vol% treat rate with ISOPAR M reference fuel, showed that the canola methyl ester enhanced the fuel's lubricity number. From the analyses performed, it was determined that the ester with the most potential for being an additive or a substitute for diesel fuel is the canola methyl ester, whose physical and chemical characteristics are similar to diesel fuel.  相似文献   

5.
Biodiesel has been produced by transesterification of canola oil with methanol in the presence of highly Br?nsted acidic ionic liquids based on 1-benzyl-1H-benzimidazole, and the effect of reaction temperature, type and amount of catalyst, molar ratio and reaction time investigated. The results show that the 4B ionic liquid has the highest catalytic activity and best recyclability under the optimised reaction conditions. Thus, this ionic liquid is able to catalyze the transesterification of canola oil to its methyl esters in 5 h with yields of more than 95%. Density functional calculations (B3LYP), using the 6-311G basis set, have been performed to have a better understanding on the reactivity of these catalysts. The catalytic activity of 4B for the transesterification of other vegetable oils and alcohols has also been studied.  相似文献   

6.
Biodiesel production—current state of the art and challenges   总被引:3,自引:0,他引:3  
Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production. JIMB 2008: BioEnergy—special issue.  相似文献   

7.
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.  相似文献   

8.
In the conventional transesterification of fats/vegetable oils for biodiesel production, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. The objective of this study was, therefore, to investigate the effect of water on the yield of methyl esters in transesterification of triglycerides and methyl esterification of fatty acids as treated by catalyst-free supercritical methanol. The presence of water did not have a significant effect on the yield, as complete conversions were always achieved regardless of the content of water. In fact, the present of water at a certain amount could enhance the methyl esters formation. For the vegetable oil containing water, three types of reaction took place; transesterification and hydrolysis of triglycerides and methyl esterification of fatty acids proceeded simultaneously during the treatment to produce a high yield. These results were compared with those of methyl esters prepared by acid- and alkaline-catalyzed methods. The finding demonstrated that, by a supercritical methanol approach, crude vegetable oil as well as its wastes could be readily used for biodiesel fuel production in a simple preparation.  相似文献   

9.
目前生物柴油因其环保和可再生利用资源的特性备受关注。多数生物柴油是通过甲醇和碱催化食用油得到的,而大量非食用油也可以制备生物柴油。本文报道用高含游离酸脂肪油快速高效低成本制备成其单酯的二步法工艺。先用1% H2SO4以少于1.5%量对甲醇和云南特产香果树(Lindera communis)籽的粗原料油以10∶1摩尔比组成的混合液酸催化酯化游离脂肪酸;之后再对醇和得到的油脂产品按摩尔比15∶1的混合液碱催化转化为单甲酯和甘油。本方法是一个直接甲脂化制备生物柴油的工艺简洁、降低成本的新技术。文中还讨论了该工艺影响转化效率的主要因素,如摩尔比,催化量,温度,反应时间和酸度。香果树生物柴油不重蒸,而其生物柴油的主要特性,如粘度、热值、比重、闪点、冷滤点等与生物柴油标准的匹配度,也做了报道,研究结果将为香果树生物柴油以非重蒸油料制备生物柴油产品,作为潜在的柴油燃料替代产品提供技术支撑。  相似文献   

10.
Qian J  Wang F  Liu S  Yun Z 《Bioresource technology》2008,99(18):9009-9012
The production of fatty acid methyl ester (FAME) by direct in situ alkaline-catalyzed transesterification of the triglycerides (TG) in cottonseeds was examined. The experimental results showed that the amount of cottonseed oil dissolved in methanol was approximately 99% of the total oil and the conversion of this oil could achieve 98% under the following conditions: less than 2% moisture content in cottonseed flours, 0.3-0.335mm particle size, 0.1mol/L NaOH concentration in methanol, 135:1 methanol/oil mole ratio, 40 degrees C reaction temperature and 3h reaction time. Further, the effects of co-solvent petroleum ether and methanol recycling on the cottonseed oil extraction and conversion were also investigated. The use of alkaline methanol as extraction and reaction solvent, which would be useful for extraction oil and gossypol, would reduce the gossypol content in the cottonseed meal. The free and total gossypol contents in the cottonseed meal obtained from in situ alkaline transesterification were far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources.  相似文献   

11.
Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR (1H and 13C). The chemical composition of sunflower oil biodiesel was determined by GC–MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by 1H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.  相似文献   

12.
Transesterification of canola oil was carried out with methanol, ethanol, and various mixtures of methanol/ethanol, keeping the molar ratio of oil to alcohol 1:6 and using KOH as a catalyst. Mixtures of alcohol increased the rate of transesterification reaction and produced methyl as well as ethyl esters. The increased rate was result of better solubility of oil in reaction mixture due to better solvent properties of ethanol than methanol and equilibrium due to methanol. With 3:3 molar ratio of methanol to ethanol {MEE (3:3)} the amount of ethyl ester formed was 50% that of methyl ester. Properties (acid value, viscosity, density) of all esters including mixed esters were within the limits of ASTM standards. Lubricities of these esters are in the order: ethyl ester>methyl ethyl ester>methyl ester.  相似文献   

13.
Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80 °C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.  相似文献   

14.
Biodiesels are alkyl esters produced by transesterification of higher fatty acids (aliphatic chains composed of 14 to 22 carbon units) from animal fats and/or vegetable oils. The cold filter plugging points (CFPP) of biodiesels are not only higher than that of petro-diesel, but they also differ from the melting point of the raw (unesterified) materials. In this study, we empirically derived equations that estimated the CFPP of a biodiesel based on its fatty acid content, using various biodiesel blends containing four methyl esters with different fatty acid compositions: soybean (SME), palm (PME), rapeseed (RME), and lard (LME). These blending ratio experiments yielded three equations that described the correlation between CFPP and fatty acid content: Y (CFPP, °C) = −3.1X (blending ratio) − 12.7 (PME/SME); Y = 2.2X − 10.7 (LME/SME); and Y = −4.0X − 13.0 (PME/RME). We also obtained the correlation between CFPP and total saturated fatty acid methyl ester content in the biodiesels: Y (CFPP, °C) = 0.449X (total saturated fatty acid methyl ester content, wt%) − 9.198. These empirical equations accurately predicted CFPP values of biodiesel compounds with known fatty acid compositions, facilitating the use of diverse biodiesels in industrial fields. The first two authors equally contributed to this work.  相似文献   

15.
Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.  相似文献   

16.
Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rapeseed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cottonseed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production.  相似文献   

17.
Biodiesel is an alternative fuel for diesel engines produced through transesterification of oleaginous feedstocks. To analyze the influence of the fatty-acid composition on biodiesel optimization, transesterification of several vegetable oils has been studied. Reactions were carried out in flasks filled with vegetable oils, heated to the reaction temperature and stirred at 1100 rpm. The reactions started when the methanol and potassium hydroxide solutions were added to the flasks. Concentration of catalyst, amount of methanol, reaction temperature and time were optimized using a factorial design and a surface response design. Also, a kinetics study was carried out to optimize the reaction time. Results showed that reaction parameters optimal values depend on the oil chemical and physical properties. It can be concluded from this field trial that the effect of both catalyst concentration and reaction time over the transesterification yield is greatly influenced by the saturation degree and fatty-acid chain length.  相似文献   

18.
Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties. JIMB 2008: BioEnergy - Special issue.  相似文献   

19.
This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO2 emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.  相似文献   

20.
Chemosensory similarities among oils: does viscosity play a role?   总被引:1,自引:1,他引:0  
Ramirez  Israel 《Chemical senses》1994,19(2):155-168
It is widely thought that viscosity plays an important rolein the perception of fats. Rats were conditioned to avoid oilsuspensions by treating them with lithium chloride after theyhad ingested the oil suspension. Control rats received the samelithium chloride injection after they drank vehicle. Three,chemically different, oils were examined, triglyceride oil,silicone oil and mineral oil. Rats trained to avoid a 4% aqueoussuspension of one of these oils, reliably avoided suspensionscontaining any of the other oils, although the rats could discriminatebetween the oils. The viscosity of the oil suspension was slightlygreater than the viscosity of the vehicle alone. However, ratstrained to avoid an oil suspension, did not avoid a fluid havinga viscosity similar to that of the oil suspension. In orderto assess the possibility that rats could sense the viscosityof the oil separately from that of the vehicle, rats were testedfor their aversion to oils having viscosities much higher andmuch lower than that of the oil they were trained to avoid.Rats trained to avoid triolein having a viscosity of 67 cp,reliably avoided silicone oils having viscosities of 5 and 203cp. However, rats trained to avoid oil did not avoid an oil-freefluid having a viscosity of 22–29 cp. A final experimentexamined whether the use of viscous or non-viscous vehiclesinfluenced the conditioned aversion. No significant effect ofvehicle viscosity appeared. Thus, chemically-diverse oils areperceived, by rats, to have some perceptible attribute in common.It is proposed that this common physical attribute is boundarylubrication rather than viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号