首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensory cells in the organ of Corti exhibit loose microtubule networks enriched in tyrosinated tubulin, whereas supporting cells have bundled microtubules containing post-translationally modified tubulin. The tubulin isoform distribution suggests that the microtubules in sensory cells are dynamic and those in supporting cells are stable. To test this, microtubule resistance to cold-induced depolymerization was examined by using immunocytochemical methods and antibodies to post-translationally modified tubulins. Microtubule labelling in cochleas perfused/immersed at room temperature was identical to that in previous studies of untreated cochleas. However, the microtubule patterns of perfused/immersed specimens were changed in cold-treated cochleas. Microtubules were no longer detected with antibodies to alpha- and tyrosinated tubulin in sensory cells from specimens exposed to cold, indicating their disassembly. Supporting cells in the same specimens showed almost total loss of detyrosinated and polyglutamylated tubulin in the middle and apical cochlear turns, and reduced labelling in the basal-most turn. Probing for alpha-, nontyrosinatable, acetylated and glycylated tubulin yielded decreased and sometimes patchy staining but these isoforms were observed even when detyrosinated and polyglutamylated tubulins were absent. The results indicate that sensory cells in the gerbil auditory sensory epithelium contain only cold-sensitive microtubules. In contrast, supporting cells possess a substantial subset of cold-stable microtubules, providing structural support to the vibratory sensory organ required for hearing.  相似文献   

2.
Age-related changes in microtubules in the guinea pig organ of Corti   总被引:2,自引:0,他引:2  
Biochemical and immunocytochemical analyses have been used to provide new insights into age-related changes in the sensory and supporting cells of the guinea pig organ of Corti. Quantitative densitometry of immunoblots showed that, while levels of alpha-tubulin remained relatively constant in guinea pigs from 3 weeks to 18 months old, there were progressive shifts in some tubulin isoforms. Levels of tyrosinated tubulin increased with age, nontyrosinatable tubulin (delta2-tubulin) showed a compensatory decrease, but detyrosinated tubulin did not change; acetylated, polyglutamylated, and glycylated tubulin levels also decreased. Immunolabeled tissue sections showed that cell type-specific distribution of tubulin seen in young guinea pigs (tyrosinated in the microtubules of the sensory cells, and post-translationally modified isoforms in the supporting cells) did not change as animals aged. However, there were age-related decreases in labeling for alpha-tubulin and all post-translationally modified isoforms. Biochemical and immunocytochemical results both support an age-related decrease in the number and/or length of microtubules as well as an increase in the pool of soluble tyrosinated and detyrosinated tubulin. They further suggest that microtubules containing nontyrosinatable tubulin from older animals are the sites for further modification of tubulin by acetylation, polyglutamylation, and glycylation. Changes in tubulin isoform levels and stability of microtubules in the organ of Corti may alter its micromechanical properties; the resulting changes in conduction of sound-induced vibration would provide one mechanism for age-related hearing loss.  相似文献   

3.
 A panel of monoclonal antibodies specific of α-tubulin (TU-01, TU-09) and β-tubulin (TU-06, TU-13) subunits was used to study the location of N-terminal structural domains of tubulin in adult mouse brain. The specificity of antibodies was confirmed b immunoblotting experiments. Immunohistochemical staining of vibratome sections from cerebral cortex, cerebellum, hippocampus, and corpus callosum showed that antibodies TU-01, TU-09, and TU13 reacted with neuronal and glial cells and their processes, whereas the TU-06 antibody stained only the perikarya. Dendrites and axons were either unstained or their staining was very weak. As the TU-06 epitope is located on the N-terminal structural domain of β-tubulin, the observed staining pattern cannot be interpreted as evidence of a distinct subcellular localization of β-tubulin isotypes or known post-translational modifications. The limited distribution of the epitope could, rather, reflect differences between the conformations of tubulin molecules in microtubules of somata and neurites or, alternatively, a specific masking of the corresponding region on the N-terminal domain of β-tubulin by interacting protein(s) in dendrites and axons. Accepted: 11 November 1996  相似文献   

4.
Summary— The distribution of microtubules was investigated in Nicotiana tabacum pollen tubes at different stages of tube growth by immunofluorescence microscopy. Using specific antibodies, the presence of microtubules consisting of different tubulin isoforms was tested. α-, β- and tyrosinated α-tubulin were present within the tube, whereas the acetylated form was lacking. The presence of tubulin subunits in pollen tube extracts was also investigated by immunoblotting analyses. The use of a confocal laser scanning microscope integrated with computer-assisted imaging, allowed a detailed visualization of the microtubule distribution and organization. Cytoplasmic microtubules organized as short bundles with various orientations were detected at the apex of long tubes.  相似文献   

5.
Summary. Many of the highly organized microtubular arrangements in ciliates are located in the cortical area containing membrane vesicles and vacuoles. In Tetrahymena thermophila and Paramecium caudatum, immunofluorescence microscopy with the monoclonal antibody TU-06, directed against β-tubulin, revealed distinct staining of this cortical region alone, while the cilia and other microtubular structures were unstained. The specificity of the antibody was confirmed by immunoblotting and by preabsorption of the antibody with purified tubulin. Double-label immunofluorescence with antibodies against γ-tubulin, detyrosinated α-tubulin, and centrin showed that the TU-06 epitope is localized outside the basal body region. This was also confirmed by immunogold electron microscopy of thin sections. Proteolytic digestion of porcine brain β-tubulin combined with a peptide scan of immobilized, overlapping peptides disclosed that the epitope was in the β-tubulin region β81–95, a region which is phylogenetically highly conserved. As known posttranslational modifications of β-tubulin are located outside this area, the observed staining pattern cannot be interpreted as evidence of subcellular sequestration of modified tubulin. The limited distribution of the epitope could rather reflect the dependence of TU-06 epitope exposition on conformations of tubulin molecules in microtubule arrangements or on differential masking by interacting proteins. Correspondence and reprints: Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.  相似文献   

6.
The differential distribution of microtubules in osteoclasts in culture was examined by using antibodies against acetylated, tyrosinated, or detyrosinated tubulins. Tyrosinated tubulin was found throughout the cytoplasmic microtubules in all cells examined. An expanding protrusion that contained tyrosinated tubulin but none of the detyrosinated or acetylated form was seen in the immature osteoclasts. Detyrosinated or acetylated tubulin was detectable in the peripheral cytoplasm of the mature osteoclasts displaying the loss of the expanding protrusion. Although most of the microtubules were derived from the centrosome, noncentrosomal microtubules were distributed in the expanding protrusion, which was predominantly positive for tyrosinated tubulin. By tracing single microtubules, the authors found that their growing ends were always rich in tyrosinated tubulin subunits. End binding protein 1 bound preferentially to the microtubule ends. Both acetylated and tyrosinated microtubules were shown to be closely associated with podosomes. Microtubules appeared to grow over or into the podosomes; in addition, the growing ends of single microtubules could be observed to target the podosomes. Moreover, a microtubule-associated histone deacetylase 6 was localized in the podosomes of the osteoclast. On the basis of these results, the authors conclude that posttranslational modifications of microtubules may correlate with characteristic changes in podosome dynamics in osteoclasts.  相似文献   

7.
We performed a comparative electron microscopic analysis of centriolar and cytoplasmic microtubules stained with antibodies to acetylated or tyrosinated α-tubulin during the cell cycle of mouse nonmalignant Balb 3T3 (clone A31) and virus-transformed heteroploid SV40-3T3 cell lines. It was shown that the pattern of centriole immunostaining changed during the cell cycle in 3T3 (A31) cells, but not in tumorigenic SV40-3T3 cells. Remarkable changes in the centriole immunostaining pattern were observed during interphase-mitosis or mitosis-interphase transitions when the microtubule system and protein organization of centrosomes underwent drastic rearrangements. A high level of tyrosinated tubulin in centrioles was observed at all stages of the cell cycle except when entering mitosis, whereas a high level of acetylated tubulin was visualized in centrioles at all stages of the cell cycle except at the end of mitosis.  相似文献   

8.
Summary Monoclonal antibodies able to recognize single antigenic determinants are a powerful tool for the study of immunological heterogeneity of antigens. In this paper we have used a monoclonal antibody against the -subunit of pig brain tubulin (TU-01) to investigate the immunoreactivity of tubulins from mammals, avians, amphibia, echinodermata, plathelmints, slime moulds and protozoa. Immunoreactivity was detected using immunoblotting and indirect immunofluorescence of isolated cells. Our results show that the antigenic determinant recognized by the TU-01 antibody is present in all metazoan tubulin tested and among the eukaryotic microorganisms only in the flagellateTrichomonas vaginalis. Indirect immunofluorescence also reveals that not allTrichomonas microtubules are stained by TU-01 antibody indicating the presence of different tubulins within a single cell. This results are consistent with the multitubulin hypothesis (Fulton andSimpson 1976).  相似文献   

9.

Background  

The function of the cortical microtubules, composed of αβ-tubulin heterodimers, is linked to their organizational state which is subject to spatial and temporal modulation by environmental cues. The role of tubulin posttranslational modifications in these processes is largely unknown. Although antibodies against small tubulin regions represent useful tool for studying molecular configuration of microtubules, data on the exposure of tubulin epitopes on plant microtubules are still limited.  相似文献   

10.
A comparative analysis of the distribution of tubulin types in apyrene and eupyrene sperm of Euptoieta hegesia butterflies was carried out, also verifying the presence of tubulin in lacinate appendages of the eupyrene sperm. Ultrathin sections of LR White embedded spermatids and spermatozoa were labeled for alpha, beta, gamma, alpha-acetylated and alpha-tyrosinated tubulins. Apyrene and eupyrene spermatids show the same antibody recognition pattern for tubulins. All tubulin types were detected in axonemal microtubules. Alpha and gamma tubulins were also detected on the cytoplasmic microtubules. However, for beta and tyrosinated tubulins only scattered labeling was detected on cytoplasmic microtubules and acetylated tubulin was not detected. In apyrene and eupyrene spermatozoa only the axoneme labeling was analyzed since cytoplasmic microtubules no longer exist in these cells. Alpha, beta and tyrosinated tubulins were easily detected on the apyrene and eupyrene axoneme; gamma tubulin was strongly marked on eupyrene axonemes but was scattered on the apyrene ones. Acetylated tubulin appeared with scattered labeling on the axoneme of both sperm types. Our results demonstrate significant differences in tubulin distribution in apyrene and eupyrene axonemal and cytoplasmic microtubules. Extracellular structures, especially the lacinate appendages, were not labeled by antibodies for any tubulin.  相似文献   

11.
1. Posttranslational modifications of tubulin by acetylation and detyrosination have been correlated previously with microtubule stability in numerous cell types. 2. In this study, posttranslational modifications of tubulin and their regional distribution within teleost photoreceptor cones and rods are demonstrated immunohistochemically using antibodies specific for acetylated, detyrosinated, or tyrosinated tubulin. 3. Immunolocalization was carried out on isolated whole cones and mechanically detached rod and cone inner/outer segments. 4. Acetylated tubulin within rods and cones is found only in microtubules of the ciliary axoneme of the outer segment. Detyrosinated tubulin is also enriched in axonemes of both rod and cone outer segments. 5. Distributions of tyrosinated and detyrosinated cytoplasmic microtubules differ within cones and rods. In cones, detyrosinated and tyrosinated tubulins are both abundant throughout the cell body. In rods, the ellipsoid and myoid contain much more tyrosinated tubulin than detyrosinated tubulin. Comparisons between whole cones and cone fragments suggest that detyrosinated microtubules are more stable than tyrosinated microtubules in teleost photoreceptors. 6. Our findings provide further evidence that microtubules of teleost cones differ from rod microtubules in their stabilities and rapidity of turnover within the photoreceptor inner segment.  相似文献   

12.
Wang W  Vignani R  Scali M  Sensi E  Cresti M 《Planta》2004,218(3):460-465
To further understand post-translational modifications (PTMs) of plant -tubulin, post-translationally modified -tubulin isoforms from selected tissues of Zea mays L. were examined using two-dimensional electrophoresis and immunoblotting. Except for polyglycylated tubulin, tyrosinated, detyrosinated, acetylated and polyglutamylated -tubulin isoforms were all present in maize tissues. Tyrosinated -tubulin was the predominant variant in all cases, with isoforms 1–4 (5) being the most common components. Leaves exhibited a striking difference in PTM patterns of -tubulin isoforms compared to other tissues examined. In leaves, several major specific isoforms were highly modified by detyrosination, acetylation and polyglutamylation. In pollen and anthers, only the most abundant isoform 3 was acetylated to an appreciable extent, and no acetylated isoform was found in roots. Similarly, in pollen, anthers and roots, only 3 was appreciably polyglutamylated. Additionally, a detyrosinated isoform 6 was present in anthers and in leaves, while the tyrosinated isoform 6 seemed to be pollen specific. These results indicate that certain types of PTM of plant -tubulin preferentially occur in a tissue-specific way.Abbreviations 1-, 2-D one-, two-dimensional - MT microtubule - PTM post-translational modification  相似文献   

13.
Summary Four monoclonal antibodies that discriminate between structural domains of alpha-(TU-01, TU-04) or beta-(TU-06, TU-12) tubulin and a polyclonal anti-tubulin antibody were used for immunostaining of human spermatozoa using immunofluorescence microscopy. Specificity of antibodies was confirmed by immunoblotting experiments. Antibodies TU-01 and TU-06 uniformly stained the whole tail and the neck, whereas antibodies TU-04, TU-12 showed differential distribution of corresponding epitopes in the stable arrays of flagellar microtubules. Of the monoclonal antibodies used, only TU-12 against the antigenic determinant on C-terminal domain of -tubulin showed strong reactivity with the equatorial segment of the head. The results document a differential exposure of tubulin epitopes at the single-cell level and suggest the existence of distinct tubulin populations in various structural compartments of the human spermatozoon.  相似文献   

14.
The synthesis of post-translationally modified tubulins was examined during Artemia development. Tubulin, either purified to homogeneity or in cell-free extracts, was blotted to nitrocellulose and probed with a panel of antibodies. When purified tubulin was examined, tyrosinated tubulin underwent a large decrease as development progressed and this was accompanied by the appearance of detyrosinated tubulin in samples from organisms developed 24 hr. The inclusion of carboxypeptidase inhibitors had a small effect on the relative amounts of tyrosinated and detyrosinated tubulins in 24-hr preparations. The amount of alpha- and beta-tubulin in cell-free extracts of Artemia either remained relatively constant during development or increased slightly. The same result was obtained for acetylated and tyrosinated tubulin. Detyrosinated tubulin first appeared in 24-hr cell-free extracts and was only post-translationally modified tubulin to increase, relative to the total amount of tubulin, as the brine shrimp developed. As revealed by immunofluorescence staining, detyrosinated tubulin occurred in many cell types of developing nauplii and was prominently displayed in mitotic figures. Artemia, a complex metazoan animal, is thus able to grow for an extended period of time in the absence of detyrosinated tubulin. This isoform is however, synthesized in early larvae and may be required for the development of elongated cells including those which encircle the gut. Detyrosination remains as the only developmentally related change observed for brine shrimp tubulin.  相似文献   

15.
Immunocytochemistry and Western blotting techniques demonstrated that the nervous system and foot of the pond snail Lymnaea stagnalis are rich sources of tubulin, which can be extracted and assembled in vitro in the presence of taxol. Various broad-spectrum antibodies raised against -tubulin and -tubulin yielded qualitatively similar results. One monoclonal antibody to trypanosome -tubulin, however, labelled -tubulin more strongly on both probed sections and Western blots. Cytochemistry and immunoblotting revealed that tyrosinated tubulin constitutes a large proportion of total -tubulin in locomotor cilia of the foot and in axons of the nervous system. Detyrosinated tubulin also appeared to be abundant in the foot cilia but only a very faint band of detyrosinated tubulin was found on protein blots extracted from the central ganglia, and staining was barely detectable in central ganglia or peripheral nerves. Similarly, acetylated tubulin appeared to be abundant in foot cilia, but Western blotting indicated only low levels of acetylated tubulin in the nervous system. Immunocytochemistry indicated that, while most neurons possessed little or no acetylated tubulin, a small number of axons contained significant amounts of this isoform. Thus, while a large amount of tubulin was expected in the nervous system and locomotor cilia of L. stagnalis, the observed distribution of isoforms was unanticipated. Specifically, neurons of other organisms have generally been reported to contain substantial amounts of both detyrosinated -tubulin and acetylated -tubulin. Our results indicate that such findings cannot be generalized across all species. L. stagnalis, with its well studied nervous system and unusual distribution of tubulin isoforms, may prove to be particularly useful for studying the roles of tubulin isoforms in microtubule function and cell activity.  相似文献   

16.
Neuronal cells display different subsets of dynamic microtubules. In axons and extending neurites, this intrinsic dynamics is modulated by the microtubule-associated protein tau. Moreover, posttranslational modifications of tubulin, namely acetylation, tyrosination or glutamylation are directly involved in determining the stability of neuronal microtubules. Studies were carried out to analyze the interaction patterns of tau with subsets of microtubules in N2A neuroblastoma cells, which can differentiate in the presence of dibutyryl cAMP. Double labeling studies showed a differential pattern of tau association with microtubules containing acetylated and tyrosinated tubulin. Furthermore, studies using depolymerizing drugs revealed a selectivity in the association of tau with microtubular polymers and microfilaments, within the organization of the neuronal cytoskeleton. In order to study the association of specific tau isoforms with microtubules containing modified tubulin variants, immunoprecipitation studies were carried out. The coimmunoprecipitation data indicated a selective binding of specific tau isoforms to either modified tubulin variant. To assess the hypothesis on the roles of tau isoforms in the stabilization of microtubules containing modified tubulins, the association of those variants with tau isoforms was analyzed in overlay experiments. A preferential binding of acetylated tubulin from undifferentiated N2A cell extracts, to at least one slow-migrating tau isoform was revealed. However, acetylated tubulin from N2A cells containing long neurites displayed a preferential association with two isoforms of tau. On the other hand, tyrosinated tubulin from N2A extracts bound to the entire set of neuronal tau isoforms. These studies, along with the tau association with microtubules with different stability, indicate that tau segregates into subsets of microtubules in the axonal processes. The studies also suggest that these interactions may respond to a functional versatility of these polymers in differentiating neurons.  相似文献   

17.
A set of four monoclonal antibodies against tubulin (TU-01, TU-02, TU-03, and TU-04) were produced using pig brain microtubule protein as antigen. Their characterization shows that all recognize antigenic determinants located on the tubulin alpha-subunit. However, peptide mapping of isolated alpha-tubulin, followed by immunoblotting with the monoclonal antibodies, shows that the antigenic determinants are located on different peptide fragments in at least three cases. The immunoreactivity with tubulins from different cells and tissues, ranging from eukaryotic microorganisms to man, was studied by immunoblotting and immunofluorescence. The antigenic determinants recognized by the antibodies are not uniformly distributed but, in some instances, are absent from tubulins of lower eukaryotic cells. These antibodies also make it possible to distinguish between different sets of microtubules within individual cells. Antigenically different microtubules are particularly evident in mouse spermatozoa and in some protozoa (T. vaginalis, H. muscarum, L. tropica, N. gruberi) possessing different sets of microtubules with different functions. These monoclonal antibodies can clearly identify the heterogeneity of tubulin or microtubules both from different organisms and within the same cell.  相似文献   

18.
Summary Rat cortical and hippocampal pyramidal cells were immunocytochemically investigated using the TU-01 monoclonal antibody recognizing α-tubulin. The isotypic specificity of this antibody is distinct from that of other available α-tubulin antibodies; therefore, an intracellular heterogeneity among neuronal microtubules could be revealed by observing intensely immunostained apical dendritic microtubules in the complete absence of staining of the microtubules in the basal dendrites and perikarya of the same pyramidal cells.  相似文献   

19.
The cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei brucei essentially consists of two microtubule-based structures: a subpellicular layer of singlet microtubules, which are in close contact with the cell membrane, and the flagellar axoneme. In addition, the cells contain a small pool of soluble tubulin. Two-dimensional gel electrophoretic analysis of the tubulins present in these subcellular compartments revealed two distinct electrophoretic isoforms of alpha-tubulin, termed alpha 1 and alpha 3. alpha 1-Tubulin most likely represents the primary translation product, while alpha 3-tubulin is a posttranslationally acetylated derivative of alpha 1-tubulin. In the pool of soluble cytoplasmic tubulin, alpha 1 is the predominant species, while the very stable flagellar microtubules contain almost exclusively the alpha 3-tubulin isoform. The subpellicular microtubules contain both isoforms. Neither of the two alpha-tubulin isoforms is organelle specific, but the alpha 3 isoform is predominantly located in stable microtubules.  相似文献   

20.
Summary Peptide-specific antibody AAB1, raised to the C-terminal 13 amino acids ofArabidopsis thaliana 1 tubulin, identifies a single electrophoretically separable -tubulin on 2-D-gel Western blots of total protein extracts fromA. thaliana seedlings. We show that AAB1 crossreacts with two of the eight polyglutamylated -tubulin isoforms present in purifiedNicotiana tabacum tubulin fractionated by high-resolution isoelectric focussing. Immunolocalisation studies using AAB1 revealed that the twoN. tabacum polyglutamylated 1-tubulin isoforms are utilised in all four plant microtubule arrays (the interphase cortical array, the preprophase band, the spindle and the phragmoplast) indicating that there is no apparent subcellular sorting of these isotypes.Abbreviations AAB1 Anti-Ambidopsis thaliana 1-tubulin antibody - HRIF high-resolution isoelectric focussing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号