首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Seetharam  A Dean  K S Iyer  A S Acharya 《Biochemistry》1986,25(20):5949-5955
Generation of a fragment-complementing system of the alpha-chain on limited proteolysis with Staphylococcus aureus V8 protease has been investigated. Digestion of the alpha-chain (0.4 mM) of hemoglobin with V8 protease in phosphate buffer at pH 6.0 and 37 degrees C is limited to the peptide bonds of Glu-23, Glu-27, Glu-30, and Asp-47. Gel filtration of a V8 protease digest of the alpha-chain on a Sephadex G-50 column did not release any heme to the low molecular weight region, though some peptides were released from the protein. The filtration studies revealed the presence of two heme-containing components in the digest, the major one eluting at the alpha-chain position and the minor one eluting slightly ahead of the alpha-chain position. Reversed-phase high-performance liquid chromatography and amino-terminal sequence analysis demonstrated that the component eluting at the alpha-chain position contains species generated by the noncovalent interactions of heme and the complementary fragments alpha 1-30 and alpha 31-141. In dilute solutions (0.04 mM) the V8 protease digestion occurred exclusively on the carboxyl side of Glu-30(alpha). This high selectivity was also observed at pH 4.0 and pH 7.8. The visible spectra and the ultraviolet circular dichroic spectra of the digest reflect the native-like structure of the noncovalent fragment system. The dissociation constant of alpha 1-30 appears to be in the range of 10(-8) M. In tetrameric hemoglobin A the peptide bond of Glu-30-Arg-31 of the alpha-chain is not accessible to V8 protease digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The proteosynthetic activity of Staphylococcus aureus V8 protease (endoproteinase Glu-C) immobilized onto cross-linked agarose beads by reductive alkylation procedure has been investigated. The overall substrate specificity of the enzyme, as judged by peptide mapping of performic acid oxidized RNase A, as well as the high propensity of the protease to slice selectively the alpha-chain of hemoglobin (Hb) A at the Glu(30)-Arg(31) peptide bond at pH 4.0 and 37 degrees C was essentially unperturbed by the immobilization process. This high susceptibility of Glu(30) of the alpha-chain for proteolysis appears to be a consequence of the conformational aspects of the polypeptide in this region. The proteolysis of two mutant forms of alpha-chain, namely, those of Hb I (K16E) and Hb Sealy (D47H) by immobilized V8 protease at the Glu(30)-Arg(31) peptide bond proceeds with the same selectivity. The immobilized protease also retained the proteosynthetic activity, i.e., the ability to ligate the unprotected alpha-globin fragments at the Glu(30)-Arg(31) peptide bond in the presence of 30% 1-propanol. The use of the insoluble enzyme simplifies the procedures for the construction of new semisynthetic, molecular variants of alpha-globin. The general applicability of the immobilized enzyme for protein semisynthesis has been demonstrated by the construction of a doubly mutated alpha-globin. The complementary fragments from two natural mutant forms of alpha-globin, viz., alpha 1-30 (K16E) from Hb I and alpha 31-141 (D47H) from Hb Sealy, are readily ligated to form the double mutant alpha 1-141 (K16E;D47H).  相似文献   

3.
Semisynthesis of carboxy-terminal fragments of thermolysin   总被引:2,自引:0,他引:2  
Enzyme-catalyzed synthesis of two polypeptide fragments, one of which is obtained by chemical synthesis, in the presence of proteolytic enzymes and in aqueous organic solvents constitutes a convenient procedure for the synthesis of proteins and their analogs. This novel semisynthetic procedure was investigated for preparing COOH-terminal fragments of the metallo-protease thermolysin. Fragment 205-316, obtained by autolysis of the protein in the presence of EDTA, was first cleaved selectively with Staphylococcus aureus V8 protease at the level of the single Glu302 residue into fragments 205-302 and 303-316. Upon incubation for 2-5 days of fragment 205-302 with a 5-fold excess of peptide 303-316, prepared by solid phase synthesis, with V8-protease in 0.1 M ammonium acetate, pH 6.0, containing 50% glycerol as organic cosolvent, enzyme-catalyzed reformation of the peptide bond was achieved in yields up to approximately 90% (based on fragment 205-302). The same procedure was used to prepare also the thermolysin fragments 205-315 and 205-311 by enzymatic coupling of fragment 205-302 to peptide 303-315 or 303-311, these last prepared by proteolytic digestion of the synthetic peptide 303-316. This procedure of semisynthesis opens up an approach for the site-directed modification of the tetrahelical COOH-terminal fragment 205-316 of thermolysin at the level of its helical segment encompassing residues 301-312 in the native, intact protein. Such analogs will be useful for examining structure-folding-stability relationships in this folded fragment possessing domain-like characteristics.  相似文献   

4.
The optimal conditions for the semisynthesis of alpha-globin through Staphylococcus aureus V8 protease condensation of a synthetic fragment (alpha 1-30) with the complementary apo fragment (alpha 31-141) in the presence of structure-inducing organic cosolvents and the reconstitution of the functional tetramer from semisynthetic alpha-globin have been investigated. The protease-catalyzed ligation of the complementary apo fragments alpha 1-30 and alpha 31-141 proceeds with very high selectivity at pH 6.0 and 4 degrees C in the presence of 1-propanol as the organic cosolvent. A 30% 1-propanol solution was optimal for the semisynthetic reaction, and the synthetic reaction attained an equilibrium (approximately 50%) in 72 h. The synthetic reaction proceeds smoothly over a wide pH range (pH 5-8). Besides, the semisynthetic system is flexible, and it also proceeded well if trifluoroethanol or 2-propanol was used instead of 1-propanol. However, glycerol, a versatile organic cosolvent used in all other proteosynthetic reactions reported in the literature, was not very efficient as an organic cosolvent in the present synthetic reaction. The semisynthetic alpha-globin prepared with 1-propanol as the organic cosolvent has been reconstituted into HbA. The semisynthetic HbA was then purified by CM-cellulose chromatography. The semisynthetic HbA is indistinguishable from native HbA, in terms of its structural and functional properties. The semisynthetic approach provides the flexibility in protein engineering studies for the incorporation of spectroscopic labels (13C- and/or 15N-labeled amino acids), noncoded amino acids, or unnatural bond functionalities, which at present is not possible with genetic approaches.  相似文献   

5.
The alpha-globin semisynthetic reaction, namely, the ligation of the complementary fragments of alpha-globin, alpha 1-30 and alpha 31-141, in the presence of 30% l-propanol that is catalyzed by V8 protease is distinct as compared with the previously studied protease-catalyzed splicing of the discontinuity sites of the fragment complementing systems [Sahni et al. (1989) Biochemistry 28, 5456]. The complementary fragments of alpha-globin do not exhibit noncovalent interaction between them even in the presence of l-propanol, the organic cosolvent used to facilitate the alpha-globin semisynthetic reaction. Besides, a significant portion of the fragment alpha 31-141 does not contribute to the protease-catalyzed splicing reaction. Alpha 1-30 and alpha 31-40 are ligated by V8 protease to yield alpha 1-40 in much the same way as the splicing of alpha 1-30 with either alpha 31-141 or alpha 31-47 to yield alpha-globin or alpha 1-47, respectively. An equimolar mixture of alpha 1-30 and alpha 31-40 does not show any 'complexation' in the presence of 30% l-propanol, the medium used for the synthetic reaction. The splicing junction, i.e., Glu30-Arg31 peptide bond, is located in the middle of the B-helix (residues 20-35) of the parent protein. Most of the residues from the A-helix of the protein could also be deleted from segment alpha 1-30 without influencing the V8 protease-catalyzed splicing reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Mouse alpha(1-30)-horse alpha(31-141) chimeric alpha-chain, a semisynthetic super-inhibitory alpha-chain, inhibits beta(S)-chain dependent polymerization better than both parent alpha-chains. Although contact site sequence differences are absent in the alpha(1-30) region of the chimeric chain, the four sequence differences of the region alpha(17-22) could induce perturbations of the side chains at alpha(16), alpha(20) and alpha(23), the three contact sites of the region. A synergistic complementation of such contact site perturbation with that of horse alpha(31-141) probably results in the super-inhibitory activity of the chimeric alpha-chain. The inhibitory contact site sequence differences, by themselves, could also exhibit similar synergistic complementation. Accordingly, the polymerization inhibitory activity of Hb Le-Lamentin (LM) mutation [His20(alpha)-->Gln], a contact site sequence difference, engineered into human-horse chimeric alpha-chain has been investigated to map such a synergistic complementation. Gln20(alpha) has little effect on the O(2) affinity of HbS, but in human-horse chimeric alpha-chain it reduces the O(2) affinity slightly. In the chimeric alpha-chain, Gln20(alpha) increased sensitivity of the betabeta cleft for the DPG influence, reflecting a cross-talk between the alpha(1)beta(1) interface and betabeta cleft in this semisynthetic chimeric HbS. In the human alpha-chain frame, the polymerization inhibitory activity of Gln20(alpha) is higher compared with horse alpha(1-30), but lower than mouse alpha(1-30). Gln20(alpha) synergistically complements the inhibitory propensity of horse alpha(31-141). However, the inhibitory activity of LM-horse chimeric alpha-chain is still lower than that of mouse-horse chimeric alpha-chain. Therefore, perturbation of multiple contact sites in the alpha(1-30) region of the mouse-horse chimeric alpha-chain and its linkage with the inhibitory propensity of horse alpha(31-141) has been now invoked to explain the super-inhibitory activity of the chimeric alpha-chain. The 'linkage-map' of contact sites can serve as a blueprint for designing synergistic complementation of multiple contact sites into alpha-chains as a strategy for generating super-inhibitory antisickling hemoglobins for gene therapy of sickle cell disease.  相似文献   

7.
We have studied the conformation as well as V8 protease-mediated synthesis of peptide fragments, namely amino acid residues 295-316 (TC-peptide) of thermolysin and residues 1-20 (S-peptide) of ribonuclease A, to examine whether "conformational trapping" of the product can facilitate reverse proteolysis. The circular dichroism study showed cosolvent-mediated cooperative helix formation in TC-peptide with attainment of about 30-35% helicity in the presence of 40% 1-propanol and 2-propanol solutions at pH 6 and 4 degrees C. The thermal melting profiles of TC-peptide in the above cosolvents were very similar. V8 protease catalyzed the synthesis of TC-peptide from a 1:1 mixture of the non-interacting complementary fragments (TC295-302 and TC303-316) in the presence of the above cosolvents at pH 6 and 4 degrees C. In contrast, V8 protease did not catalyze the ligation of S1-9 and S10-20, although S-peptide could assume helical conformation in the presence of the cosolvent used for the semisynthetic reaction. V8 protease was able to synthesize an analog of S-peptide (SA-peptide) in which residues 10-14 were substituted (RQHMD-->VAAAK). While S-peptide exhibited helical conformation in the presence of aqueous propanol solutions, SA-peptide displayed predominantly beta-sheet conformation. SA-peptide showed enhanced resistance to proteolysis as compared with S-peptide. Thus, failure of semisynthesis of S-peptide may be a consequence of high flexibility around the 9-10 peptide bond due to its proximity to the helix stop signal. The results suggest that protease-mediated ligations may be achieved by design and manipulation of the conformational aspects of the product.  相似文献   

8.
The influence of n-propanol on the overall α-helical conformation of β-globin, apocytochrome C, and the functional domain of streptococcal M49 protein (pepM49) and its consequence on the proteolysis of the respective proteins has been investigated. A significant amount of α-helical conformation is induced into these proteins atpH 6.0 and 4°C in the presence of relatively low concentrations of n-propanol. The induction of α-helical conformation into the proteins increased as a function of the propanol concentration, the maximum induction occurring around 30% n-propanol. In the case of α-globin, the fluorescence of its tryptophyl residues also increased as a function of n-propanol concentration, the midpoint of this transition being around 20% n-propanol. Furthermore, concomitant with the induction of helical conformation into these proteins, the proteolysis of their polypeptide chain by V8 protease also gets restricted. The α-helical conformation induced into α- and β-globin by n-propanol decreased as the temperature is raised from 4 to 24°C. In contrast, the α-helical conformation of both α- and β-chain (i.e., globin with noncovalently bound heme) did not exhibit such a sensitivity to this change in temperature. However, distinct differences exist between the n-propanol induced “α-helical conformation” of globins and the “α-helical conformation” of α- and β-chains. A cross-correlation of the n-propanol induced increase in the fluorescence of β-globin with the corresponding increase in the α-helical conformation of the polypeptide chain suggested that the fluorescence increase represents a structural change of the protein that is secondary to the induction of the α-helical conformation into the protein (i.e., an integration of the helical conformation induced to the segments of the polypeptide chain to influence the microenvironment of the tryptophyl residues). Presumably, the fluorescence increase is a consequence of the packing of the helical segments of globin to generate a “native-like structure.” The induction of α-helical conformation into these proteins in the presence of n-propanol and the consequent generation of “native-like conformation” is not unique to n-propanol. Trifluoroethanol, another helix-inducing organic solvent, also behaves in the same fashion as n-propanol. However, in contrast to the proteins described above, n-propanol could neither induce an α-helical conformation into performic acid oxidized RNAse-A nor restrict its proteolysis by proteases. Thus, the high sensitivity of apoproteins and the protein domains to assume α-helical conformation in the presence of low concentration of n-propanol with a concomitant restriction of the proteolytic susceptibility of their polypeptide chain appears to be unique to those proteins that exhibit high α-helical propensities. Apparently, this phenomenon of helix induction and the restriction of proteolysis reflects the formation of rudimentary tertiary interaction of the native protein and is unique to apoproteins or structural domains of α-helical proteins. Consistent with this concept, the induction of α-helical conformation into shorter polypeptide fragments of 30 residues, (e.g., α1-30, which exists in an α-helical conformation in hemoglobin) is very low. Besides, this peptide exhibited neither the high sensitivity to the low concentrations of n-propanol seen with the apoproteins/protein domains nor the resistance toward proteolysis. The results suggest that the organic cosolvent induced decrease in the conformational flexibility of the apoprotein, and the consequent restriction of their proteolytic cleavage provides an opportunity to develop new strategies for protease catalyzed segment condensation reactions.  相似文献   

9.
Human C5 is composed of two nonidentical polypeptide chains, alpha and beta (m.w. 130,000 and 80,000, respectively) linked together by disulfide bonds and noncovalent forces. Cleavage of C5 by trypsin fragments with increased anodic mobilities. Limited digestion of C5 by trypsin (substrate to enzyme ratio 10:1 w/w at 37 degrees C for 1 min) resulted in the release of a small terminal alpha-chain peptide (alpha1, m.w. 15,000) probably analogous to C5a, from a large fragment, C5b (m.w. 195,000) composed of an intact beta-chain disulfide linked to an alpha-chain that has a lower m.w. (alpha' 115,000). Further digestion (37 degrees C, 5 min) resulted in cleavage of the alpha-chain at multiple sites with the production of three peptides from the alpha'-chain (alpha2I, 23,500; alpha2II 15,700 and alpha2III 10,200) and a residual fragment, C5c (m.w. 144,000). The alpha1 and alpha2 peptides are not covalently linked to the beta-chain nor to one another. The C5c fragment on the other hand is composed of small peptides of the alpha'c chain (alpha3 14,000; alpha4I 9,000; ALPHA 4II 11,000; alpha 5 23,000 to 30,000) which are linked to the beta-chain and also probably to one another by covalent bonds. Secondary cleavage occurred upon prolonged digestion with trypsin (37 degrees C, 20 min), and this resulted in the progressive erosion of the alpha'c peptides and the conversion of C5c to smaller C5c-like species.  相似文献   

10.
The structural motif of 'product conformation driven V8 protease catalyzed ligation reaction' can be represented by FR(I)-EALER-FR(II). The relative roles of the flanking regions (FR(I) and FR(II)) and of splicedon, the central penta-peptide, on the thermodynamic stability of the 'conformational trap' of the product has been now evaluated as a function of co-solvent concentration. The studies have established that the thermodynamic stability of the conformational trap of alpha17-40des23-26 with four different splicedons (EALER, EALEV, EYGER, or EGAER) that differ in the intrinsic alpha-helical potential of their amino acid residues and/or ability to generate i, i+4 side chain interaction is a direct correlate of the n-propanol induced alpha-helical conformation of the product. On the other hand, when the product is defined by only splicedon EALER, and the flanking regions are disitinct; no correlation could be drawn between the stability of the trap and solvent induced alpha-helical conformation, even though these generally give an equilibrium yield of 45% in 30% n-propanol and is not influenced by an increased propanol concentration. However, when the splicedon EALER with given FR(I) and FR(II) region develops a 'conformational trap' of a lower stability in 30% propanol as seen with beta18-25(A22)-EALER-beta31-39, the stability increases in 60% n-propanol, without significant increase in the alpha- helical conformation. Though, primary structure of RNAse1-20, could be presented as RNAse1-5-AKFER- RNAse1-20, and alpha-helical conformation is induced to this peptide both in 30 and 60% propanol, splicedon AKFER by itself does not develop the 'conformational trap' of RNAse1-20. The splicedon AKFER of RNAse1-20 fails to develop the 'conformational trap', due to an intrinsic inhibitory potential of its FR region, RNAse11-20; replacing RNAse11-20 with alpha32-40 enables the splicedon AFKER to generate the 'conformational trap'. The studies presented here have demonstrated the primary role of flanking regions in establishing the amount of the solvent induced alpha-helical conformation and that of the splicedon in dictating the thermodynamic stability of its 'conformational trap' of the products, nonetheless one influences the other to some degree. We suggest that the stability of the 'conformational trap' of the product reflects the ability of the splicedon to 'recruit' the product conformation to protect the spliced peptide bond, i.e. to reduce the helix-coil transition of the spliced region which in turn imparts a degree of resistance to the spliced peptide bond.  相似文献   

11.
The influence of the deletion of the tetra peptide segment alpha(23-26) of the B-helix of the alpha-chain of hemoglobin-A on its assembly, structure, and functional properties has been investigated. The hemoglobin with the deletion, ss-Hemoglobin-Einstein, is readily assembled from semisynthetic alpha(1-141) des(23-26) globin and human betaA-chain. The deletion of alpha(23-26) modulates the O2 affinity of hemoglobin in a buffer/allosteric effector specific fashion, but has little influence on the Bohr effect. The deletion has no influence on the thermodynamic stability of the alpha1beta1 and the alpha1beta2 interface. The semisynthetic hemoglobin exhibits normal intersubunit interactions at the alpha1beta1 and alpha1beta2 interfaces as reflected by 1H-NMR spectroscopy. Molecular modeling studies of ss-Hemoglobin-Einstein suggest that the segment alpha(28-35) is in a helical conformation, while the segment alpha(19-22) is the nonhelical AB region. The shortened B-helix conserves the interactions of alpha1beta1 interface. The results demonstrate a high degree of plasticity in the hemoglobin structure that accommodates the deletion of alpha(23-26) without perturbing its overall global conformation.  相似文献   

12.
Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields several intermediate peptide fractions after separation by reversed phase HPLC exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli, and Salmonella enteritidis. From these fractions, four new antibacterial peptides were isolated and analyzed by ESI-MS/MS. Three of these peptides correspond to fragments of the alpha-chain of bovine hemoglobin: alpha107-141, alpha137-141, and alpha133-141, and one peptide to the beta-chain: beta126-145. The minimum inhibitory concentrations (MIC) of these peptides towards the four strains and their hemolytic activity towards bovine erythrocytes were determined.  相似文献   

13.
The T cell response to lambda-repressor is directed to a 15 amino acid peptide (P12-26) of the protein in A/J mice. Previous studies have demonstrated a preferential use of V alpha 2 and V beta 1 amongst the T cell hybridomas specific for P12-26 in the context of I-Ek. By using the polymerase chain reaction, the sequences of a panel of the T cells using V alpha 2 and V beta 1 were determined. A highly conserved alpha-chain V-J junctional sequence was found in six of the eight T cell hybrids. This consensus alpha-chain VJ sequence may be combined with different members of V alpha 2, indicating a more restricted selection on the junctional region than on the V element in these T cells. In contrast, greater diversities were found on the V-D-J region of beta-chains despite the same V beta 1 and J beta 2.1 were used. However, a highly conserved glutamic acid residue was found at the same position of beta-chains where a similar conservation was identified in cytochrome c-specific T cells. The correlation of the TCR sequence with the fine specificities of these T cells suggests that a single amino acid deletion in the V alpha-J alpha region may reduce the P12-26 response and abolish the recognition of an altered peptide [Phe22] P12-26. In addition, three amino acid difference in the V-D-J region of the beta-chain also determine the P12-26 reactivity. Thus the V(D)J junctional regions of both alpha- and beta-chains may be critical for the recognition of the peptide Ag presented by the specific MHC molecule.  相似文献   

14.
A synthetic approach was employed to identify the haptoglobin-binding site on the alpha-chain of human haemoglobin. This approach cosists of the synthesis of a series of consecutive overlapping peptides that, together, systematically represent the entire protein chain. Fourteen peptides were synthesized (alpha 1-15, alpha 11-25, alpha 21-35, alpha 31-45, alpha 41-55, alpha 51-65, alpha 61-75, alpha 71-85, alpha 81-95, alpha 91-105, alpha 101-115, alpha 111-125, alpha 121-135 and alpha 131-141), and their ability bind human haptoglobin was studied, Only peptide alpha 121-135 bound haptoglobin significantly. On this basis we conclude that the haptoglobin-binding site on the alpha-chain of haemoglobin resides within, but does not necessarily encompass all of, the region alpha 121-135.  相似文献   

15.
Symplectin is one of the few photoproteins, which forms covalent bonds with the dehydro-coelenterazine (DCL) at the binding sites and the active site. This binding takes place through the SH’s of the cysteine residues via conjugate addition reaction. This photoprotein contains the chromophore molecules at the binding cites first, and then moves to the active cite Cys-390 for the luminescence. The current study focuses on these dynamic aspects of the chromophore using the natural photoprotein by analyzing the fluorescence changing of the DCL chromophores analogs with 8-(4′-methoxyphenyl)- or 8-(2′-naphthyl)-group and 2-(2′,4′-difluorophenyl)-group. Exchanges of these chromophores were monitored the fluorescence at slightly acidic media and also from the luminescence function observed at the optimum pH 7.8. The non-fluorescent naphthyl analogs was even proven to make the covalent bond formation at pH 6.0 and evidently to obtain the corresponding luminescent product amide by liquid chromatographic detection from the spent solutions.  相似文献   

16.
Organic co-solvent-induced secondary conformation of alpha(17-40) of human hemoglobin facilitates the splicing of E30-R31 in a mixture of its complementary segments by V8 protease. The amino acid sequence of alpha(17-40) has been conceptualized by the general structure FR(I)-EALER-FR(II) and the pentapeptide sequence EALER playing a major role in inducing the alpha-helical conformation. The primary structure of alpha(17-40) has been engineered in multiple ways to perturb one, two, or all three regions and the influence of the organic co-solvent-induced conformation and the concomitant resistance of E30-R31 peptide bond to V8 protease digestion has been investigated. The central pentapeptide (EALER), referred to here as splicedon,(3) appears to dictate a primary role in facilitating the splicing reaction. When the same flanking regions are used, (1) splicedons that carry amino acid residues of low alpha-helical potential, for example G at position 2 or 3 of the splicedon, generate a conformational trap of very low thermodynamic stability, giving an equilibrium yield of only 3%-5%; (2) splicedons with amino acid residues of good alpha-helical potential generate a conformational trap of medium thermodynamic stability and give an equilibrium yield of 20%-25%; (3) the splicedons with amino residues of good alpha-helical potential and also an amino acid that can generate an i, i + 4 side-chain carboxylate-guanidino (amino) interaction, a conformational trap of maximum thermodynamic stability is generated, giving an equilibrium yield of 45%-50%; and (4) the thermodynamic stability of the conformational trap of the spliced peptide is also influenced by the amino acid composition of the flanking regions. The V8 protease resistance of the spliced peptide bond is not a direct correlate of the amount of alpha-helical conformation induced into the product. The results of this study reflect the unique role of the splicedon in translating the organic co-solvent-induced product conformation as a site-specific stabilization of the spliced peptide bond. It is speculated that the splicedon with higher alpha-helical potential as compared to either one of the flanking regions achieves this by integrating its potential with that of the flanking region(s). Exchange of flanking regions with the products of other V8 protease-catalyzed splicing reactions will help to establish the general primary structural requirements of this class of splicing reactions and facilitate their application in modular construction of proteins.  相似文献   

17.
The Y-Ae mAb and the 1H3.1 TCR-alpha beta (V alpha 1/V beta 6) are two immune receptors specific for I-Ab MHC class II molecules complexed to the 52-68 fragment of the alpha-chain of I-E class II molecules (the E alpha 52-68 peptide). A profound intrathymic negative selection occurs in 1H3.1 TCR transgenic mice in the presence of an I-E alpha transgene. The administration of mAbs to 1H3.1/I-E alpha double-transgenic newborn mice reveals that Y-Ae, but not the isotype-matched anti-I-E Y17 mAb, rescues a significant number of mature (V beta 6highCD4+CD8-) thymocytes and allows the detection of E alpha 52-68-reactive T cells in the periphery. These observations indicate that deletion of autoreactive T cells can be specifically inhibited in vivo by an mAb specific for the deleting self-peptide:self-MHC class II complex. Similar inhibition experiments indicate that C57BL/6 (I-Ab+/I-E alpha-) mice constitutively express an E alpha-independent, Y-Ae-recognizable epitope(s). This finding is confirmed by the phenotypic analysis of mature (MHC class II high) C57BL/6 bone marrow-derived dendritic cells. Collectively, these observations further illustrate the peptide specificity of negative selection and demonstrate that MHC class II-positive cells from unmanipulated C57BL/6 mice that lack a functional I-E alpha gene can assemble one or more self-peptide:I-Ab complexes recognizable by the E alpha 52-68:I-Ab complex-specific Y-Ae mAb.  相似文献   

18.
P Nacharaju  A S Acharya 《Biochemistry》1992,31(50):12673-12679
The site selectivity of nonenzymic glycation of proteins has been suggested to be a consequence of the Amadori rearrangement activity of the protein at the respective glycation sites [Acharya, A. S., Roy, R. P., & Dorai, B. (1991) J. Protein Chem. 10, 345-358]. The catalytic activity that determines the potential of a site for nonenzymic glycation is the propensity of its microenvironment to isomerize the protein bound aldose (aldimine) to a protein bound ketose (ketoamine). The catalytic power of the microenvironment of the glycation sites could be endowed to them either by the amino acid sequence (nearest-neighbor linear effects) or by the higher order structure (tertiary/quarternary) of the protein (nearest-neighbor three-dimensional effect). In an attempt to resolve between these two structural concepts, the glycation potential of Val-1(alpha) and Lys-16(alpha), the residues of hemoglobin A exhibiting the least and the highest isomerization activity in the tetramer, respectively, has been compared in the segment alpha 1-30, isolated alpha-chain, and the tetramer. When alpha-chain is used as the substrate for the nonenzymic glycation, the influence of the quaternary structure of the tetramer will be absent. Similarly, the contribution of the tertiary and quaternary structure of the protein will be absent when alpha 1-30 is used as the substrate. The microenvironment of Lys-16(alpha) exhibited hardly any Amadori rearrangement activity in the segment alpha 1-30. The tertiary structure of the alpha-chain induces a considerable degree of catalytic activity to the microenvironment of Lys-16(alpha) to isomerize the aldimine adduct at this site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Granzyme B has been purified to homogeneity from the granules of a human cytolytic lymphocyte line, Q31, in an enzymatically active form by a three-step procedure. Q31 granzyme B hydrolyzed Na-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 11 +/- 5 mol/s/mol enzyme and catalytic efficiency kcat/Km of 76,000 +/- 44,000 M-1 s-1. The hydrolysis of Boc-Ala-Ala-Asp thiobenzyl ester by crude Q31 Percoll fractions paralleled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated with granules. When chromatographed on Sephacryl S-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which electrophoresed at 35 kDa in reducing NaDodSo4 polyacrylamide, and both of which showed a lag phase in assays. The lag phase in assays could be extended with 0.03 mM pepstatin. Upon elution from ion-exchange chromatography Q31 granzyme B electrophoresed at 32 kDa in reducing NaDodSO4 polyacrylamide and did not have a lag phase in assays. The amino-terminal sequence of the 32-kDa Q31 granzyme B was identical to four other human cytotoxic T-lymphocyte granzymes B in 18 of 18 positions sequenced. Purified Q31 granzyme B had a preference for substrates with Glu or Asp as the residue amino-terminal to the scissile bond; little or no activity was noted with oligopeptide substrates for trypsin-like, chymotrypsin-like, and elastase-like proteases. Human plasma alpha 1-protease inhibitor, human plasma alpha 2-protease macroglobulin, soybean and lima-bean trypsin inhibitors, bovine aprotinin, phosphoramidon, and chymostatin inhibited Q31 granzyme B. The inhibition by alpha 1-protease inhibitor was rapid enough to be of physiological significance.  相似文献   

20.
In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 microM quercetin or 2 h incubation with 25 microM quercetin, whereas 1 and 10 microM quercetin inhibit GSTP1-1 activity to a significant extent reaching a maximum of 25 and 42% inhibition respectively after 2 h. Co-incubation with tyrosinase greatly enhances the rate of inactivation, whereas co-incubation with ascorbic acid or glutathione prevents this inhibition. Addition of glutathione upon complete inactivation of GSTP1-1 partially restores the activity. Inhibition studies with the GSTP1-1 mutants C47S, C101S and the double mutant C47S/C101S showed that cysteine 47 is the key residue in the interaction between quercetin and GSTP1-1. HPLC and LC-MS analysis of trypsin digested GSTP1-1 inhibited by quercetin did not show formation of a covalent bond between Cys 47 residue of the peptide fragment 45-54 and quercetin. It was demonstrated that the inability to detect the covalent quercetin-peptide adduct using LC-MS is due to the reversible nature of the adduct-formation in combination with rapid and preferential dimerization of the peptide fragment once liberated from the protein. Nevertheless, the results of the present study indicate that quinone-type oxidation products of quercetin likely act as specific active site inhibitors of GSTP1-1 by binding to cysteine 47.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号