首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using three serotypes (four strains) of cultivable porcine rotavirus as immunizing antigens, 10 neutralizing monoclonal antibodies were characterized. One VP4-specific monoclonal antibody directed against porcine rotavirus BEN-144 (serotype G4) neutralized human rotavirus strain ST-3 in addition to the homologous porcine virus. All nine VP7-specific monoclonal antibodies were highly specific for viruses of the same serotype as the immunizing rotavirus strain. One exception was the VP7-specific monoclonal antibody C3/1, which neutralized both serotype G3 and G5 rotaviruses. However, this monoclonal antibody did not neutralize the porcine rotavirus AT/76, also of serotype G3, nor mutants of SA-11 virus (serotype G3) which were selected with monoclonal antibody A10/N3 and are known to have mutations affecting the C antigenic region.  相似文献   

2.
M Ciarlet  Y Hoshino    F Liprandi 《Journal of virology》1997,71(11):8213-8220
A panel of single and double neutralization-resistant escape mutants of serotype G11 porcine rotavirus strains A253 and YM, selected with G11 monotype- and serotype-specific neutralizing monoclonal antibodies (MAbs) to VP7, was tested in neutralization assays with hyperimmune sera raised against rotavirus strains of different serotypes. Escape mutants with an amino acid substitution in antigenic region A (amino acids [aa] 87 to 101) resulting in a residue identical or chemically similar to those present at the same positions in serotype G3 strains, at positions 87 for strain A253 and 96 for strain YM, were significantly more sensitive than the parental strains to neutralization with sera against some serotype G3 strains. Also, one YM antigenic variant (YM-5E6.1) acquired reactivity by enzyme-linked immunosorbent assay with MAbs 159, 57/8, and YO-1E2, which react with G3 strains, but not with the serotype G11 parental strain YM. Cross-adsorption studies suggested that the observed cross-neutralization by the G3-specific sera was due to the sera containing antibodies reactive with the parental strain plus antibodies reactive with the epitope(s) on the antigenic variant that mimick the serotype G3 specific one(s). Moreover, antibodies reactive with antigenic region F (aa 235 to 242) of VP7 might also be involved since cross-reactivity to serotype G3 was decreased in double mutants carrying an additional mutation, which creates a potential glycosylation site at position 238. Thus, single point mutations can affect the serotype reactivity of G11 porcine rotavirus strains with both monoclonal and polyclonal antibodies and may explain the origin of rotavirus strains with dual serotype specificity based on sequence divergence of VP7.  相似文献   

3.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

4.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

5.
A single-gene substitution reassortant 11-1 was generated from two porcine rotaviruses, OSU (serotype 5) and Gottfried (serotype 4). This reassortant derived 10 genes, including gene 4 encoding VP3, from the OSU strain and only gene 9, encoding a major neutralization glycoprotein (VP7), from the Gottfried strain and was thus designated VP3:5; VP7:4. Oral administration of this reassortant to colostrum-deprived gnotobiotic newborn pigs induced a high level of neutralizing antibodies not only to Gottfried VP7 but also to OSU VP3, thus demonstrating that VP3 is as potent an immunogen as VP7 in inducing neutralizing antibodies during experimental oral infection. Gnotobiotic piglets infected previously with the reassortant were completely resistant to oral challenge with the virulent Gottfried strain (VP3:4; VP7:4), as indicated by failure of symptoms to develop and lack of virus shedding. Similarly, prior infection with the reassortant induced almost complete protection against diarrhea and significant restriction of virus replication after oral challenge with the virulent OSU strain (VP3:5; VP7:5). Thus, it appears that (i) the immune system of the piglet responds equally well to two rotavirus outer capsid proteins, VP3 and VP7, during primary enteric rotavirus infection; (ii) antibody to VP3 and antibody to VP7 are each associated with resistance to diarrhea; and (iii) infection with a reassortant rotavirus bearing VP3 and VP7 neutralization antigens derived from two viruses of different serotype induces immunity to both parental viruses. The relevance of these findings to the development of effective reassortant rotavirus vaccines is discussed.  相似文献   

6.
We previously reported that the expression of rotavirus phenotypes by reassortants was affected by recipient genetic background and proposed specific interactions between the outer capsid proteins VP4 and VP7 as the basis for the phenotypic effects (D. Chen, J. W. Burns, M. K. Estes, and R. F. Ramig, Proc. Natl. Acad. Sci. USA 86:3743-3747, 1989). A neutralizing, cross-reactive VP4-specific monoclonal antibody (MAb), 2G4, was used to probe the protein-protein interactions. The VP4 specificity of 2G4 was confirmed by immunoblot analysis. MAb 2G4 reacted with both standard (SA11-C13) and variant rotavirus SA11 (SA11-4F) but did not react with bovine rotavirus B223 as determined by plaque reduction neutralization (PRN) and enzyme-linked immunosorbent assay (ELISA). When a panel of SA11-4F/B223 and SA11-Cl3/B223 reassortants in purified or crude lysate form that had been grown in the presence or absence of trypsin was analyzed with MAb 2G4 by PRN and ELISA, the results with some reassortants were unexpected. That is, MAb 2G4 reacted with VP4 of SA11 parental origin (4F or C13) when it was assembled into capsids with the homologous SA11 VP7 but failed to react with VP4 of SA11 assembled into capsids with heterologous B223 VP7. Conversely, MAb 2G4 failed to react with VP4 of B223 parental origin when it was assembled into capsids with homologous B223 VP7 but did react with B223 VP4 assembled into capsids with the heterologous SA11 VP7. Similar reactivity was observed when 2G4 was used to immunoprecipitate purified double-shelled virions. When soluble unassembled viral proteins were analyzed by ELISA, the 2G4 reactive pattern was as predicted from the parental origin of VP4. That is, 2G4 reacted with the soluble VP4 of reassortants having VP4 from SA11-Cl3 or SA11-4F and failed to react with VP4 of B223 origin, regardless of the origin of VP7. PRN and ELISA results obtained with nonglycosylated viruses revealed that the unexpected reactivity of 2G4 with virus particles was not the result of differential glycosylation of VP7 and epitope masking. These results indicate that the 2G4 epitope existed in the soluble form of VP4 encoded by SA11-Cl3 or SA11-4F but not in soluble B223 VP4. On the other hand, in assembled virions, the presentation of the 2G4 epitope on VP4 was unexpected in some reassortants and was affected by the specific interactions between VP4 and VP7 of heterologous parental origin.  相似文献   

7.
The recognition that rotaviruses are the major cause of life-threatening diarrheal disease and significant morbidity in young children has focused efforts on disease prevention and control of these viruses. Although the correlates of protection in children remain unclear, some studies indicate that serotype-specific antibody is important. Based on this premise, current live attenuated reassortant rotavirus vaccines include the four predominant serotypes of virus. We are evaluating subunit rotavirus vaccines, 2/6/7-VLPs and 2/4/6/7-VLPs, that contain only a single VP7 of serotype G1 or G3. In mice immunized parenterally twice, G3 virus-like particles (VLPs) induced a homotypic, whereas G1 VLPs induced a homotypic and heterotypic (G3) serum neutralizing immune response. Administration of three doses of G1 or G3 VLPs induced serum antibodies that neutralized five of seven different serotype test viruses. The inclusion of VP4 in the VLPs was not essential for the induction of heterotypic neutralizing antibody in mice. To confirm these results in another species, rabbits were immunized parenterally with two doses of 2/4/6/7-VLPs containing a G3 or G1 VP7, sequentially with G3 VLPs followed by G1 (G3/G1) VLPs, or with live or psoralen-inactivated SA11. High-titer homotypic serum neutralizing antibody was induced in all rabbits, and low-level heterotypic neutralizing antibody was induced in a subset of rabbits. The rabbits immunized with the G1 or G3/G1 VLPs in QS-21 were challenged orally with live G3 ALA rotavirus. Protection levels were similar in rabbits immunized with homotypic G3 2/4/6/7-VLPs, heterotypic G1 2/4/6/7-VLPs, or G3/G1 2/4/6/7-VLPs. Therefore, G1 2/4/6/7-VLPs can induce protective immunity against a live heterotypic rotavirus challenge in an adjuvant with potential use in humans. Following challenge, broad serum heterotypic neutralizing antibody responses were detected in rabbits parenterally immunized with G1, G3/G1, or G3 VLPs but not with SA11. Immunization with VLPs may provide sufficient priming of the immune system to induce protective anamnestic heterotypic neutralizing antibody responses upon subsequent rotavirus infection. Therefore, a limited number of serotypes of VLPs may be sufficient to provide a broadly protective subunit vaccine.  相似文献   

8.
The VP7 and VP4 genes of seven antigenic mutants of simian rotavirus SA11 4fM (serotype 3) selected after 39 passages in the presence of SA11 4fM hyperimmune antiserum, were sequenced. Nucleotide sequence analysis indicated the following. (i) Twice as many amino acid substitutions occurred in the VP7 protein than in VP4, which has a molecular weight twice that of VP7. (ii) Most amino acid changes that occurred clustered in six variable regions of VP7 and in two variable regions of VP4; these variable regions may represent immunodominant epitopes. (iii) Most amino acid substitutions that occurred in VP7 and VP4 of these mutants were also observed in antigenic mutants selected with neutralizing monoclonal antibodies (NMAbs); however, some amino acid substitutions occurred that were not selected for NMAbs. (iv) On VP7, some of the neutralization epitopes appeared to be interrelated because amino acid substitution in one site affected binding of specific NMAbs to other sites, while other neutralization epitopes on VP7 appeared to be independent, in that amino acid substitution in one site did not affect the binding of NMAbs to another distant site.  相似文献   

9.
Sera from 17 of 18 adult volunteers challenged with a virulent serotype 1 rotavirus strain (D) were examined for prechallenge antibody levels against several well-defined rotavirus VP7 and VP4 neutralization epitopes by a competitive epitope-blocking immunoassay (EBA) in order to determine whether correlates of resistance to diarrheal illness could be identified. The presence of prechallenge serum antibody at a titer of greater than or equal to 1:20 that blocked the binding of a serotype 1 VP7-specific monoclonal antibody (designated 2C9) that maps to amino acid residue 94 in antigenic site A on the serotype 1 VP7 was significantly associated with resistance to illness or shedding (P less than 0.001) or illness and shedding (P less than 0.01) following challenge with the serotype 1 virus. In addition, an EBA antibody titer of greater than or equal to 1:20 in prechallenge serum against a serotype 3 VP7-specific epitope (defined by monoclonal antibody 954/159) that maps to amino acid 94 on the serotype 3 VP7 was also significantly associated with resistance to illness or shedding (P = 0.02), with a trend for protection against illness and shedding. A trend was also noted between the presence of EBA antibody against a cross-reactive VP4 epitope common to many human rotavirus strains, including the challenge virus, or a rhesus monkey rotavirus strain-specific VP4 antigenic site, and resistance to illness or shedding. These data confirm that the presence of serum antibody correlates with resistance to rotavirus illness or shedding but, in addition, demonstrate the association of antibody to a specific epitope with resistance to illness or shedding. These data also suggest that antigenic site A on the rotavirus VP7, composed of amino acids 87 to 96, may be involved in the formation of a major protective epitope. Further study of the role of this epitope in the development of homotypic and heterotypic immunity to rotaviruses following natural or vaccine-induced infection may be important in the development of strategies for control of rotavirus diarrheal disease.  相似文献   

10.
Natural infection by very similar strains of rotavirus during the 1988-1989 rotavirus season in Cincinnati, Ohio, provided complete protection of young children against subsequent rotavirus illnesses for a period of at least 2 years. Using this limited strain variability, we characterized the association between the titers of antibody to either the VP4 or the VP7 neutralization protein and protection against subsequent rotavirus disease. This was done by using reassortants that contained only one of the two rotavirus neutralization proteins of 89-12, a culture-adapted isolate representative of the protective rotavirus strains. The other neutralization protein in these reassortants was derived from a heterologous rotavirus (WC3 or EDIM) to which the infected subjects made little or no neutralizing antibody (titers, < or = 20). The geometric mean titer (GMT) of antibody to 89-12 in convalescent-phase sera from the 21 subjects analyzed was 2,323. The GMT of antibody to a reassortant (strain WC-4) that contained the VP7 protein of 89-12 and VP4 of WC3 was 387. In contrast, the GMT of antibody to a reassortant (strain EDIM-7) that contained the VP4 protein of 89-12 and the VP7 protein of EDIM was 1,078. Thus, the major neutralization response was directed against VP4 rather than VP7, a finding that has important implications for development of appropriate rotavirus vaccines.  相似文献   

11.
C F Arias  G Garcia    S Lopez 《Journal of virology》1989,63(12):5393-5398
In the rotavirus SA11 surface protein VP4, the trypsin cleavage sites associated with the enhancement of infectivity are flanked by two amino acid regions that are highly conserved among different rotaviruses. We have tested the ability of synthetic peptides that mimic these two regions to induce and prime for a rotavirus neutralizing antibody response in mice. After the peptide immunization schedule, both peptides induced peptide antibodies, but neither was able to induce virus antibodies, as measured by an enzyme-linked immunosorbent assay or a neutralization assay. However, when the peptide-inoculated mice were subsequently injected with intact SA11 virus, a rapid and high neutralizing antibody response was observed in mice that had previously received the peptide comprising amino acids 220 to 233 of the VP4 protein. This neutralizing activity was serotype specific; however, this peptide was also able to efficiently prime the immune system of mice for a neutralizing antibody response to the heterotypic rotavirus ST3 when the ST3 virus was used for the secondary inoculation.  相似文献   

12.
cDNA clones representing the VP8 and VP5 subunits of VP4 of symptomatic human rotavirus strain KU (VP7 serotype 1 and VP4 serotype 1A) or DS-1 (VP7 serotype 2 and VP4 serotype 1B) or asymptomatic human rotavirus strain 1076 (VP7 serotype 2 and VP4 serotype 2) were constructed and inserted into the pGEMEX-1 plasmid and expressed in Escherichia coli. Immunization of guinea pigs with the VP8 or VP5 protein of each strain induced antibodies that neutralized the rotavirus from which the VP4 subunits were derived. In a previous study (M. Gorziglia, G. Larralde, A.Z. Kapikian, and R. M. Chanock, Proc. Natl. Acad. Sci. USA 87:7155-7159, 1990), three distinct serotypes and one subtype of VP4 outer capsid protein were identified among 17 human rotavirus strains that had previously been assigned to five distinct VP7 serotypes. The results obtained by cross-immunoprecipitation and by neutralization assay with antisera to the VP8- and VP5-expressed proteins suggest that the VP8 subunit of VP4 contains the major antigenic site(s) responsible for serotype-specific neutralization of rotavirus via VP4, whereas the VP5 subunit of VP4 is responsible for much of the cross-reactivity observed among strains that belong to different VP4 serotypes.  相似文献   

13.
A total of 260 feces samples from children with confirmed rotavirus infection collected during 1999-2002 were serotyped, using enzymoimmunoassay with VP7 specific monoclonal antibodies for G1-G4 serotypes. The serotypes were identified in 185 feces, i.e. 71.2 %. Individual serotypes occurred in 43, 2, 16 and 2 %; 8 % samples reacted with 2 type-specific monoclonal antibodies. The G1 serotype was prevalent over the whole period. The G3 type occurred with a statistically higher significance in children of up to 36 months (chi2 = 4.6, p = 0.028). In 4 children a different serotype was demonstrated in the first and second, or in the second and third stools, respectively. No dominant serotype was found in children with nosocomial infection.  相似文献   

14.
The gene encoding outer capsid protein VP3 of subpopulations of two animal rotaviruses, simian SA11 and Nebraska calf diarrhea virus (NCDV), was analyzed. Two laboratory strains of simian SA11 rotavirus (SA11-SEM and SA11-FEM) differed with respect to VP3. This dimorphism was indicated by a difference in electrophoretic mobility and a difference in reactivity with anti-VP3 monoclonal antibodies. The overall VP3 amino acid homology between the two SA11 VP3 proteins was 82.7%, whereas the VP3 protein of SA11-FEM was 98.5% homologous in amino acid sequence to NCDV VP3, suggesting that SA11-FEM VP3 was derived by gene reassortment in the laboratory during contamination with a bovine rotavirus. A comparison of the deduced amino acid sequence of the VP3 of two virulent NCDV strains and an attenuated NCDV strain (RIT 4237), revealed only five amino acid differences which were scattered throughout the protein but did not involve the trypsin cleavage sites. Of interest, the VP3 of the standard strain of NCDV which is virulent for cows differed in only one amino acid (position 23, Gln to Lys) from the VP3 of an NCDV mutant which was attenuated both for cows and for children.  相似文献   

15.
PCR方法用于我国A组轮状病毒的分型研究   总被引:35,自引:2,他引:35  
方肇寅  秦树民 《病毒学报》1994,10(4):316-321
  相似文献   

16.
Serum specimens from infants 2 to 12 months old vaccinated with the WC3 bovine rotavirus were analyzed to determine the relative concentrations of neutralizing antibody to the VP4 and VP7 proteins of the vaccine virus. To do this, reassortant rotaviruses that contained the WC3 genome segment for only one of these two neutralization proteins were made. The segment for the other neutralization protein in these reassortants was from heterotypic rotaviruses that were serotypically distinct from WC3. Sera were examined from 31 infants who had no evidence of a previous rotavirus infection and the highest postvaccination WC3-neutralizing antibody titers (i.e., 160 to 600) of the 103 subjects administered the vaccine. A reassortant (3/17) that contained both neutralization proteins from the heterotypic rotaviruses, i.e., EDIM (EW strain of mouse rotavirus) VP7 and rhesus rotavirus VP4, was not neutralized by these sera (geometric mean titer [GMT], less than 20). A reassortant (E19) that contained EDIM VP7 and WC3 VP4 was also very poorly neutralized by these antisera (GMT = 20). In contrast, antibody titers to a reassortant (R20) that contained WC3 VP7 and rhesus rotavirus VP4 were higher than those against WC3 (GMTs of 458 and 313, respectively). Thus, VP7 appeared to be the dominant immunogen for production of neutralizing antibody after intestinal infection of previously uninfected infants vaccinated with WC3 bovine rotavirus.  相似文献   

17.
We performed experiments to determine whether parenteral immunization with SA11 rotavirus can induce active protective immunity in a rabbit model of rotavirus infection. After one or two intramuscular injections of 1 ml of live or formalin-inactivated SA11 virus, we evaluated the mucosal and serologic immune response and protection from challenge with a high dose of live, virulent rabbit (Ala) rotavirus. Inactivated SA11 virus preparations, evaluated by enzyme-linked immunosorbent assay (ELISA) with a panel of VP4- and VP7-specific neutralizing and nonneutralizing monoclonal antibodies, did not show a loss of epitopes from the inactivation procedure compared with live virus. Administration of two doses of vaccine, one at zero days postvaccination (DPV) and a booster shot at 49 DPV, followed by challenge at 71 DPV with 3.5 x 10(5) PFU of Ala virus resulted in protection from challenge. None of the two-dose virus-vaccinated rabbits shed virus after challenge, while virus shedding was detected in all control rabbits (P = 0.001, Fisher's exact two-tailed test). Differences in total serum immunoglobulin (Ig) antirotavirus ELISA titers (P < 0.05, Wilcoxon's rank sum test) were observed between groups vaccinated with virus in aluminum phosphate or Freund's adjuvant but not between groups vaccinated with live or inactivated virus in either adjuvant. All rabbits given two doses of vaccine had detectable antirotavirus intestinal antibody of the IgG, but not IgA, isotype. After challenge, fourfold or greater increases in intestinal IgG antibody responses were observed in three rabbits, whereas all controls and all but one virus-vaccinated rabbit had an intestinal IgA antibody response. In contrast, vaccination of rabbits with one dose of SA11 followed by challenge at 21 DPV did not protect from challenge; no difference in the mean number of days of virus shedding between any of the vaccinated groups and controls was observed. A serologic, but not a mucosal, antibody response was observed after the one-dose vaccination regimen. Differences in serologic antibody titers were not observed between any of the one-dose virus-vaccinated groups. These data indicate that parenteral vaccination with two, but not one, doses of rotavirus in either Freund's adjuvant or aluminum phosphate can induce active protection from challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine.  相似文献   

19.
A total of 368 rotavirus RNA-positive (PAGE) stool samples collected continually during 1992-95 from infants and young children under five years of age hospitalized with acute gastroenteritis were serotyped using an enzyme immunoassay with VP7-specific monoclonal antibodies (ELISA with MAbs) for serotypes G1-G4. The serotype was identified in 106 stool samples (29%). Comparison of electropherotype and serotype profile in individual samples did not show any remarkable correlation. The members of three electropherotypes (A, C, K) belonged to all 4 serotypes. The representatives of two electropherotypes (E, G) and of mixed electropherotype did not react with any of the specific monoclonal antibodies used. The distribution of the serotypes was scored as 52, 13, 14 and 7.5% for G1 G4, respectively, whereas 13% of samples reacted with two or more type-specific monoclonal antibodies. The G1 serotype dominated during the period followed.  相似文献   

20.
Antibodies specific for the major outer capsid protein (VP7) of the simian rotavirus SA11 were obtained by immunization of rabbits with a synthetic peptide, Ser-Ala-Ala-Phe-Tyr-Tyr-Arg-Val, corresponding to the eight carboxy-terminal amino acids of the viral protein predicted from the nucleotide sequence of the gene segment 9 of the SA11 genome. As the carboxy-terminal region of the VP7 of human rotavirus Wa has an identical sequence, cross-reactivity of the raised antibodies was observed with this strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号