首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: A variety of fatty acids including the cis -polyunsaturated very-long-chain fatty acids (VLCFA) (>22 carbon atoms) common in retina, spermatozoa, and brain were examined for their ability to activate protein kinase C (PKC) purified from rat brain. Arachidonic [20:4(n-6)], eicosapentaenoic [20:5(n-3)], and docosahexaenoic [22:6(n- 3)] acids as well as the VLCFA dotriacontatetraenoic [32:4(n-6)] and tetratriacontahexaenoic [34:6(n-3)] were equally capable of activating PKC in vitro with maximal activity being between 25 and 50 μ M. The phorbol ester 12- O -tetradecanoylphorbol 13-acetate further enhanced the in vitro activation of PKC when added to the protein kinase assay system with the fatty acids. The fully saturated arachidic acid (20:0) was inactive in both assay systems. The potential significance of the in vitro activation of PKC by the VLCFA is discussed.  相似文献   

2.
Calcium-dependent phospholipid-sensitive protein kinase [protein kinase C (PKC)] was partially purified from the carp (Cyprinus carpio) retina through DE 52 ion exchange and Cellulofine gel filtration chromatography. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activated PKC in the nanomolar range. A major 38-kDa protein in the retinal supernatants (105,000 g) was phosphorylated in vitro by PKC during a short period (3 min). Other phosphoproteins also appeared during a further prolonged period (greater than 15 min). Rod-bipolar and dopamine (DA) interplexiform cells in the fish retina were immunoreactive to a monoclonal antibody to PKC (alpha/beta-subtype). The PKC antibody recognized a 78-kDa native PKC enzyme by means of an immunoblotting method. Subsequently, the effects of two kinds of PKC activators were investigated on [3H]DA release from retinal cell fractions containing DA cells that had been preloaded with [3H]DA. A phorbol ester (TPA) induced a calcium- and dose-dependent [3H]DA release during a short period (2 min), with the minimal effective dose being approximately 1 nM. Other phorbols having no tumor-promoting activity, such as 4 beta-phorbol and 4 alpha-phorbol 12,13-didecanoate, were ineffective on [3H]DA release. A synthetic diacylglycerol [1-oleoyl-2-acetylglycerol (OAG)], which is an endogenous PKC activator, was also able to induce a significant release of [3H]DA. Furthermore, TPA was found to release endogenous DA from isolated fish retina by a highly sensitive HPLC with electrochemical detection method. The OAG- or TPA-induced [3H]DA or DA release was completely blocked by inhibitors of PKC, such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) and staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: Resiniferatoxin and capsaicin are sensory neurone-specific excitotoxins that operate a common cation channel in nociceptors. Resiniferatoxin is structurally similar to capsaicin and to phorbol esters. Specific [3H]-resiniferatoxin binding, which was detected in the membrane ( K D value 1.8 ± 0.2 n M ) but not cytosolic fraction of rat dorsal root ganglia, could not be displaced by phorbol 12,13-dibutyrate. Conversely, resiniferatoxin did not displace [3H]phorbol 12,13-dibutyrate binding in either the cytosolic or membrane fraction. Resiniferatoxin and capsaicin both caused translocation of protein kinase C in dorsal root ganglion neurones (EC50 value 18 ± 3 n M ). This translocation was greatly reduced but not abolished, in the absence of external Ca2+, suggesting that it was secondary to Ca2+ entry. Resiniferatoxin also caused direct activation of a Ca2+- and lipid-dependent kinase (or kinases) in the cytosolic fraction of dorsal root ganglia, at concentrations (100 n M to 10 µ M ) higher than required for displacement of [3H]resiniferatoxin binding or translocation of protein kinase C. Capsaicin (up to 10 µ M ) was unable to mimic this effect. These data imply that although resiniferatoxin-induced translocation of protein kinase C in dorsal root ganglion neurones was mainly indirect, it also caused direct activation of a protein kinase C-like kinase in these cells.  相似文献   

4.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   

5.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The actions of the tumor-promoting phorbol ester phorbol dibutyrate were examined, under identical physiological conditions, on three distinct cellular processes in striatal neurons: the distribution of protein kinase C, the carbachol-stimulated generation of [3H]inositol monophosphate, and the KCl-evoked release of gamma-[3H]aminobutyric acid ([3H]GABA). Phorbol dibutyrate induced a rapid (complete in 5 min), dose-dependent, entirely reversible (t0.5 = 15 min) translocation of protein kinase C from cytosol to membrane. On longer exposure to phorbol dibutyrate, membrane-associated protein kinase C returned toward the control level, and total cellular enzyme activity declined markedly. Phorbol dibutyrate also induced the dose-dependent attenuation of carbachol-stimulated [3H]inositol monophosphate production and potentiation of KCl-evoked release of [3H]GABA. The translocation of protein kinase C and the potentiation of KCl-evoked [3H]GABA release were both rapidly reversed following washout of phorbol dibutyrate. In addition, for both processes, the effect of a 1-h exposure to phorbol dibutyrate was markedly less than that observed following a 5-min exposure to the agent. In direct contrast, inhibition of carbachol-stimulated [3H]inositol monophosphate production was not rapidly reversed following washout of phorbol dibutyrate and was actually more pronounced following a 1-h exposure, compared with a 5-min exposure. These findings indicate that some, but not all, of the actions of phorbol dibutyrate are closely associated with the translocation of protein kinase C in striatal neurons in primary culture.  相似文献   

7.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

8.
Abstract: The involvement of protein kinase C and its interaction with interleukin 1β in the control of interleukin 6 release by cortical astrocytes was studied. The blockade of protein kinase C catalytic domain, by staurosporine, as well as the desensitization of protein kinase C by short-term phorbol 12-myristate 13-acetate pretreatment, increased the basal release of interleukin 6 by rat cortical astrocytes, whereas calphostin C, an antagonist of phorbol ester binding on protein kinase C regulatory domain, did not affect the basal release of the cytokine. The activation of protein kinase C by phorbol 12-myristate 13-acetate enhanced concentration- and time-dependently interleukin 6 release. This stimulatory action of phorbol 12-myristate 13-acetate was significantly reduced by staurosporine, by calphostin C, and by the desensitization of protein kinase C. Interleukin 1β increased interleukin 6 release in a concentration-related manner. Protein kinase C inhibition, by staurosporine or desensitization, potentiated severalfold, whereas calphostin C reduced interleukin 1β stimulation of interleukin 6 release. The treatment of cortical astrocytes with both interleukin 1β (3 ng/ml) and phorbol 12-myristate 13-acetate (10 nM) caused a synergistic stimulation of interleukin 6 release and its gene expression, an effect that was not relieved by either 20 nM staurosporine or by calphostin C but was slightly affected by protein kinase C desensitization. In conclusion, our data show that in rat cortical astrocytes the basal release of interleukin 6 is under a tonic inhibition exerted by a protein kinase C isoform or isoforms sensitive to blockade by staurosporine and desensitization but insensitive to calphostin C. Interleukin 1β stimulated interleukin 6 secretion via a mechanism that is also negatively modulated by a protein kinase C isoform or isoforms sensitive to staurosporine and desensitization. Finally, we showed that interleukin 1β and phorbol 12-myristate 13-acetate synergistically stimulated interleukin 6 release and its gene expression, operating in a manner insensitive to protein kinase C blockers and slightly reduced by protein kinase C desensitization.  相似文献   

9.
Abstract: An exposure to 12- O -tetradecanoylphorbol 13-acetate (TPA) at 20 n M for as short as 30 min was sufficient to elicit neurite outgrowth from explanted chick embryonic sensory ganglia. Attachment of the ganglia to the collagencoated substratum during exposure to TPA was essential for subsequent neurite outgrowth. Pulse-labeling with [35S]-methionine indicated no significant difference in protein synthesis between control and TPA-treated ganglia. In vitro phosphorylation assay revealed a prominent protein kinase C substrate with an apparent molecular mass of 66,000 dalton (66 kDa) in chick embryo ganglia extracts. Treatment of intact ganglia with TPA for 30 min also specifically stimulated the phosphorylation of the same protein. When staurosporine, a potent inhibitor of protein kinase C, was present during TPA treatment, both neurite outgrowth and the phosphorylation of the 66-kDa protein were blocked. Biochemical analysis of the phosphorylated 66-kDa protein indicated that (1) phosphorylation was only in serine residue, (2) the pI value was 4.5, (3) after V8 protease digestion, two phosphorylated peptide fragments, 6.0 and 7.5 kDa in size, were produced, and (4) it cross-reacted with an antiserum raised against a 66-kDa neurofilament subunit from rat spinal cord. These results suggest that early activation of protein kinase C and the phosphorylation of the 66-kDa protein may be involved in neuritogenesis.  相似文献   

10.
Sensory neurons of the chick embryo are supported in culture by several neurotrophic factors, including the phorbol esters. Because phorbol esters are known to activate one of the second messengers, namely, protein kinase C, it was of interest to see if the neurotrophic action of phorbol 12,13-dibutyrate (PDB) was related to the activation of protein kinase C in sensory neurons. Sensory neurons were obtained from dorsal root ganglia of 10-day-old chick embryos and maintained in a serum-free medium for several days to quantify survival and analyze protein kinase C activity. PDB (30 nM) supported the survival of approximately 50% of the total number of neurons plated. This value was comparable to that supported by nerve growth factor (NGF; 40 ng/ml). If PDB and NGF were added together, there was no additive effect on the survival. The protein kinase C activity of the particulate and cytosolic fractions of sensory neurons supported by NGF for 3 days was 1.26 +/- 0.1 and 2.9 +/- 0.32 pmol/min/mg of protein, respectively. In contrast, neurons supported by PDB showed an approximately 500% increase in enzyme activity in their particulate fraction. The enzyme activity of the cytosolic fraction was decreased by approximately 40%. If NGF-supported neurons were treated with PDB (30 nM) for 15 min, protein kinase C activity increased greater than 400% in the particulate fraction, whereas an approximately 50% decrease was observed in the cytosolic fraction. The protein kinase C value, expressed as a ratio of the activities in the particulate to cytosol fractions, showed large increases after phorbol treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Treatment of human embryonic kidney cells (HEK 293 cells) expressing the mouse glycine transporter 1 (GLYT1b) with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) decreased specific [3H]glycine uptake. This down-regulation resulted from a reduction of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine. The inhibitory effect of PMA treatment was also observed after removing all five predicted phosphorylation sites for PKC in GLYT1b by site-directed mutagenesis. These data indicate that glycine transport by GLYT1b is modulated by PKC activation; however, this regulation may involve indirect phosphorylation mechanisms.  相似文献   

12.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   

13.
Certain biological actions of phorbol esters cannot be duplicated by diacylglycerol (DAG). Thus, the human neuroblastoma cell line SH-SY5Y differentiates when exposed to 12-tetradecanoyl-13-acetyl-beta-phorbol (TPA) and protein kinase C (PKC) inhibitors, but not when exposed to DAG. To investigate the specific features of the phorbol diester molecule that might be responsible for these effects, we examined the extension of neurites, expression of neuron-specific enolase, and appearance and localization of phosphorylated high molecular weight neurofilament subunits (NF-H). TPA, 12-deoxy-13-tetradecanoyl-beta-phorbol, and staurosporine, but not DAG or 4-O-methyl-TPA, caused neurite outgrowth. Neuron-specific enolase was expressed in cells treated with TPA and 12-deoxy-13-tetradecanoyl-beta-phorbol but not with DAG, staurosporine, or 4-O-methyl-TPA. NF-H increased in the perikarya of cells treated with DAG and 4-O-methyl-TPA, in processes and to varying degrees in perikarya of TPA- and 12-deoxy-13-tetradecanoyl-beta-phorbol-treated cells, but much more in the processes than in the perikarya of staurosporine-differentiated cells. These findings and additional differences between the differentiation induced by TPA (a PKC activator) and staurosporine (a PKC inhibitor), including distinct morphology of the cell body and processes and time of appearance of the morphological phenotype, suggest that activators and inhibitors of PKC induce differentiation of SH-SY5Y cells by different mechanisms, and that the five-membered/seven-membered terpene ring region present in TPA must be intact for the induction of morphological differentiation.  相似文献   

14.
Effect of Brain Ischemia on Protein Kinase C   总被引:7,自引:0,他引:7  
We examined the influence of brain ischemia on the activity and subcellular distribution of protein kinase C (PKC). Two different models of ischemic brain injury were used: postdecapitative ischemia in rat forebrain and transient (6-min) cerebral ischemia in gerbil hippocampus. In the rat forebrain model, at 5 and 15 min postdecapitation there was a steady decrease of total PKC activity to 60% of control values. This decrease occurred without changes in the proportion of the particulate to the soluble enzyme pools. Isolated rat brain membranes also exhibited a concomitant decrease of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding with an apparent increase of the ligand affinity to the postischemic membranes. On the other hand, the ischemic gerbil hippocampus model displayed a 40% decrease of total PKC activity, which was accompanied by a relative increase of PKC activity in its membrane-bound form. This resulted in an increase in the membrane/total activity ratio, indicating a possible enzyme translocation from cytosol to the membranes after ischemia. Moreover, after 1 day of recovery, a statistically significant enhancement of membrane-bound PKC activity resulted in a further increase of its relative activity up to 162% of control values. In vitro experiments using a synaptoneurosomal particulate fraction were performed to clarify the mechanism of the rapid PKC inhibition observed in cerebral tissue after ischemia. These experiments showed a progressive, Ca(2+)-dependent, antiprotease-insensitive down-regulation of PKC during incubation. This down-regulation was significantly enhanced by prior phorbol (PDBu) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Abstract: The mechanism of the short-term activation by prolactin (PRL) of tyrosine hydroxylase (TH) in tuberoinfundibular dopaminergic neurons was examined in vitro on hypothalamic slices from ovariectomized rats. TH activity (determined by 3,4-dihydroxyphenylalanine accumulation in the median eminence after blockade of decarboxylase with NSD 1055) showed a dose-dependent increase within 2 h of incubation of the hypothalamic slices with PRL. To determine whether a phosphorylation process was involved in this increase in TH activity, we studied the sensitivity of the enzyme to dopamine (DA) feedback inhibition. In control median eminences, two kinetically different forms of TH coexisted, one exhibiting a K 1(DA) value of 29.92 ± 0.49 μ M , the other being × 15-fold more sensitive to DA inhibition with a K 1(DA) of 1.96 ± 0.09 μ M , likely corresponding to a phosphorylated and active form and to a nonphosphorylated and less active form, respectively. After PRL treatment, the TH form of low K 1(DA) remained unaffected, whereas the K 1(DA) of the purported active form of TH increased to 62.6 ± 0.8 μ M , suggesting an increase in the enzyme phosphorylation. This increase in the K I(DA) of TH was selectively prevented by GF 109203X, a potent and selective inhibitor of protein kinase C, but not by a specific inhibitor of protein kinase A or calmodulin. Finally, this action of PRL could be mimicked by 12- O -tetradecan-oylphorbol 13-acetate (a direct activator of protein kinase C). These results suggest that PRL, at the median eminence level, activates TH by increasing the enzyme phosphorylation and that this action may involve an activation of protein kinase C.  相似文献   

16.
Abstract: Mitogen-activated protein kinase (MAP kinase) was activated by stimulation of glutamate receptors in cultured rat hippocampal neurons. Ten micromolar glutamate maximally stimulated MAP kinase activity, which peaked during 10 min and decreased to the basal level within 30 min. Experiments using glutamate receptor agonists and antagonists revealed that glutamate stimulated MAP kinase through NMDA and metabotropic glutamate receptors but not through non-NMDA receptors. Glutamate and its receptor agonists had no apparent effect on MAP kinase activation in cultured cortical astrocytes. Addition of calphostin C, a protein kinase C (PKC) inhibitor, or down-regulation of PKC activity partly abolished the stimulatory effect by glutamate, but the MAP kinase activation by treatment with ionomycin, a Ca2+ ionophore, remained intact. Lavendustin A, a tyrosine kinase inhibitor, was without effect. In experiments with 32P-labeled hippocampal neurons, MAP kinase activation by glutamate was associated with phosphorylation of the tyrosine residue located on MAP kinase. However, phosphorylation of Raf-1, the c- raf protooncogene product, was not stimulated by treatment with glutamate. Our observations suggest that MAP kinase activation through glutamate receptors in hippocampal neurons is mediated by both the PKC-dependent and the Ca2+-dependent pathways and that the activation of Raf-1 is not involved.  相似文献   

17.
The effect of phorbol esters was investigated on the down-regulation of protein kinase C (PKC) and on the release of [3H]norepinephrine (NE) in synaptosomes from the rat cerebrum. Treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) promoted the translocation of PKC activity in a P2 fraction from the cytosol to the membrane fraction and then its down-regulation, in a dose-dependent manner. TPA induced a rapid down-regulation of the type II(beta) and type III(alpha) subspecies, but did not change the activity of the type I(gamma) subspecies in the cytosolic fraction for at least 15 min. The gamma-subspecies was subsequently decreased at a slower rate. In the synaptosomes thus having only the gamma-subspecies, a subsequent dose of TPA could not enhance K(+)-evoked NE release, although, in the original synaptosomes, TPA was able to enhance K(+)-evoked NE release. Pretreatment with TPA did not alter the K(+)-evoked NE release itself. TPA was also found to enhance the K(+)-evoked NE release from synaptosomes prepared from both hippocampus, which express the gamma-subspecies of PKC at a negligible level, and cerebral cortex, which have a significant level of the gamma-subspecies, to the same degree. These results suggest that the gamma-subspecies of PKC does not participate in the TPA-enhanced K(+)-evoked NE release from synaptosomes.  相似文献   

18.
蛋白激酶C在血小板聚集中的作用   总被引:4,自引:0,他引:4  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

19.
The effects of phorbol esters were investigated on the survival of chick sympathetic neurons in a serum-free culture medium. The protein kinase C activator phorbol 12,13-dibutyrate (PDB) supported about 40% of the plated sympathetic neurons. This number was comparable to that supported by nerve growth factor (NGF). A combination of phorbol ester and NGF did not significantly increase the number of surviving neurons. Phorbol ester-supported sympathetic neurons possessed desipramine-sensitive [3H]-norepinephrine uptake mechanism, and therefore were noradrenegic in character. Two days after the start of cultures, if NGF was replaced by phorbol ester, or phorbol ester was replaced by NGF, the number of surviving sympathetic neurons was essentially the same in both groups, and the uptake of [3H]norepinephrine was also comparable when examined 2 days after the switchover. Interchangeability between phorbol ester and NGF in the survival of sympathetic neurons suggests that both agents act on the same subpopulation of neurons of the chick sympathetic ganglia. The protein kinase C activity of cytosol and particulate fractions of NGF-supported neurons was 0.14 and 0.09 pmol/min/mg protein, respectively. In phorbol ester-supported neurons the activity in the particulate fraction increased by about fivefold. Removal of the phorbol ester after 2 days resulted in restoration of the enzyme activity in less than 1 h, and readdition of the phorbol ester again increased the activity by fivefold. When NGF was added to these neurons (1 microgram for 15 min), there was no change in the enzyme activity. Phorbol 13-acetate was ineffective in supporting sympathetic neurons in culture, as well as in enhancing protein kinase C activity. We also compared the protein kinase C activity of sympathetic neurons supported in culture by NGF and excess potassium (35 mM K+) Neurons supported in culture by 35 mM K+ for 2 days had almost eightfold more protein kinase C activity in their particulate fraction than in cytosol fraction. In NGF-supported neurons were acutely treated with excess K+, the protein kinase C activity was increased in the particulate fraction by about sevenfold in a concentration- and time-dependent manner. Excess K+ plus phorbol ester did not produce an additive effect on protein kinase C activity. PDB and excess K+ had no effect on cyclic AMP content of sympathetic neurons. In summary, the present data suggest that the neurotrophic action of PDB and excess K+ is probably mediated through protein kinase C.  相似文献   

20.
Glutamate excitotoxicity and necrotic cell death are characteristic features of ischemic neuronal injury. In the penumbral area, glutamate exposure is less pronounced and neuronal death is delayed. Recent studies suggest that delayed neuronal death is propagated by intracellular signalling pathways. Protein kinase C (PKC) activation may initiate apoptosis, but its role in ischemia is still not clear. In this study the PKC activity was investigated during non-excitotoxic ischemia in acutely dissociated rat CA1 neurons. During oxygen and glucose deprivation (OGD) the PKC activity measured with the fluorescent dye Fim-1 increased rapidly reaching a maximum of 31+/-8% (P < 0.05) after 5 min. When extracellular Ca2+ was depleted, the fluorescence intensity increased by 20+/-8% (P<0.05), but with a slower onset. In neurons treated with thapsigargin in a Ca2+ depleted solution, however, OGD did not trigger PKC activation. The results suggest that the PKC activation is mainly triggered by Ca2+ release from endogenous stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号