首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Phe3 and/or Tyr5 residues in dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) and its N-terminal hexapeptide-amide were replaced by delta-Phe or by Phe5 in order to examine the effect on opioid activity. On GPI preparation, the substitution of Phe5 for Tyr5 was well tolerated, whereas the hexa and heptapeptides containing delta Phe in position 3 and/or 5 displayed low potency. The unsaturation at position 3 alone or at positions 3 and 5 was particularly detrimental to mu activity. In the tail flick test, the influence of unsaturation or substitution at positions 3 and 5 generally matched the results of the in vitro assay. Dehydropeptides showed comparatively low antinociceptive effects and [Phe5] analogues displayed about 50% of the analgesic potency of the original peptides.  相似文献   

2.
New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic alpha-hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to mu and delta opioid receptors. The analogue with (R)-HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to delta and a significant increase of affinity to mu receptors. In contrast, an analogue with (S)-HmPhe in the same position, was very potent and more specific to delta receptors than parent DT I. The analogue with (R)-HmVal at position 5 expressed higher delta affinity and selectivity than parent DT I. The analogue with other possible isomer (S)-HmVal was less selective for delta opioid receptors, as a result of decreasing affinity to delta and increasing affinity to mu receptors. The analogues with (R)- or (S)-HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.  相似文献   

3.
A series of potential affinity label derivatives of the amphibian opioid peptide [D-Ala2]deltorphin I were prepared by incorporation at the para position of Phe3 (in the 'message' sequence) or Phe5 (in the 'address' sequence) of an electrophilic group (i.e. isothiocyanate or bromoacetamide). The introduction of the electrophile was accomplished by incorporating Fmoc-Phe(p-NHAlloc) into the peptide, followed later in the synthesis by selective deprotection of the Alloc group and modification of the resulting amine. While para substitution decreased the delta-opioid receptor affinity, selected analogs retained nanomolar affinity for delta receptors. [D-Ala2,Phe(p-NCS)3]deltorphin I exhibited moderate affinity (IC50=83 nM) and high selectivity for delta receptors, while the corresponding amine and bromoacetamide derivatives showed pronounced decreases in delta-receptor affinity (80- and >1200-fold, respectively, compared with [D-Ala2]deltorphin I). In the 'address' sequence, the Phe(p-NH2)5 derivative showed the highest delta-receptor affinity (IC50=32 nM), while the Phe(p-NHCOCH2Br)5 and Phe(p-NCS)5 peptides displayed four- and tenfold lower delta-receptor affinities, respectively. [D-Ala2,Phe(p-NCS)3]deltorphin I exhibited wash-resistant inhibition of [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) binding to delta receptors at a concentration of 80 nM. [D-Ala2, Phe(p-NCS)3]deltorphin I represents the first affinity label derivative of one of the potent and selective amphibian opioid peptides, and the first electrophilic affinity label derivative of an agonist containing the reactive functionality in the 'message' sequence of the peptide.  相似文献   

4.
The synthesis of six hexapeptide analogues of C-terminal Substance P fragment containing alpha, beta-dehydrophenylalanine (delta Phe) in the position 7 or 8 is described. The effect of the structural changes on the hypotensive activity and antigenic properties of analogues was compared. It was found that substitution of delta Phe in various analogues of C-terminal hexapeptide of Substance P resulted in different effects on the hypotensive activity. The analogues [Glp6, delta Phe7]SP6-11 and [Glp6, delta Phe8]SP6-11 retained 70% and 45% of hypotensive activity of the C-terminal hexapeptide of Substance P, respectively but they showed a completely destroyed antigenic determinant. The analogues containing additionally Sar or His in the position 9 showed a complete lack of both: hypotensive activity and expression of the antigenic determinant of Substance P.  相似文献   

5.
(Phe5, delta Ala6)-LH-RH and des-Gly10(Phe5, delta Ala6)-LH-RH ethylamide, two analogues of luteinizing hormone-releasing hormone (LH-RH), have been synthesised using fragment condensation approach in solution phase with minimum protection of the side chains. The presence of dehydroalanine in peptide fragments was confirmed by 1H n.m.r. and chemical analysis. Both the analogues were found to be inactive in comparison to LH-RH, indicating that alpha,beta-dehydrogenation of alanine in 6th position is not tolerated and suggesting that flexibility at this position may be crucial for the retention of biological activity.  相似文献   

6.
The dehydropeptide Ac-delta Phe-L-Ala-delta Phe-NH-Me, containing two dehydro-phenylalanine (delta Phe) residues, crystallizes from methanol/water in space group P2(1)2(1)2(1), with a = 12.508 (2), b = 12.746 (1) and c = 15.465 (9). In the crystalline state, the peptide chain assumes a right-handed 3(10)-helical conformation stabilized by two intramolecular hydrogen bonds, between the N-terminal acetyl group and the NH of delta Phe3, and between the CO of delta Phe1 and the NH of the C-terminal methylamide group, respectively. The two consecutive 10-membered rings formed by the hydrogen bonds have torsion angles quite close to the standard values for type III beta-bends. delta Phe1 is located in the (i + 1) position of the first beta-bend, while delta Phe2 is located in the (i + 2) position of the other beta-bend. In the crystal, the molecules are linked head to tail by intermolecular hydrogen bonds to form long helical chains. The axes of the helices are parallel to the c axis, but neighboring helices run in antiparallel directions. This crystal packing is similar to the packing motifs frequently observed in Aib-containing peptides.  相似文献   

7.
In the ligand/receptor interaction, the side chain phenyl group of phenylalanine (Phe) is involved in a so-called hydrophobic interaction, in which the Phe-phenyl group functions as a p element or merely as a hydrophobic element. The thrombin receptor-tethered ligand SFLLRNP consists of the Phe-2 residue essential for receptor activation. In order to explore the molecular characteristics of this Phe-2-phenyl group, a complete set of S/Phe/LLRNP peptides comprising six different difluorophenylalanine isomers [(F(2))Phe] was newly synthesized and assayed to evaluate their ability to induce the aggregation of human platelets. The assay results clarified several important structural elements to conclude that Phe-2-phenyl of S/Phe/LLRNP is in the edge-to-face CH/pi interaction with the receptor aromatic group, utilizing the Phe-phenyl edge along with adjacent benzene hydrogens at positions (2-3) or (5-6). It was also found that the fluorine atom at position 4 increases the acidity of the hydrogen mainly at its ortho position, resulting in a reinforcement of the CH/pi interaction and thus in an enhancement of biological activity. The H-->F replacement in the benzene ring was found to provide an effective structural examination to the Phe residue; i.e., to identify the hydrogens in the CH/pi interaction, and to strengthen the CH/pi interaction.  相似文献   

8.
K Saeki  N Ohtsuka    F Taguchi 《Journal of virology》1997,71(12):9024-9031
We previously demonstrated by site-directed mutagenesis analysis that the amino acid residues at positions 62 and 214 to 216 in the N-terminal region of mouse hepatitis virus (MHV) spike (S) protein are important for receptor-binding activity (H. Suzuki and F. Taguchi, J. Virol. 70:2632-2636, 1996). To further identify the residues responsible for the activity, we isolated the mutant viruses that were not neutralized with the soluble form of MHV receptor proteins, since such mutants were expected to have mutations in amino acids responsible for receptor-binding activity. Five soluble-receptor-resistant (srr) mutants isolated had mutations in a single amino acid at three different positions: one was at position 65 (Leu to His) (srr11) in the S1 subunit and three were at position 1114 (Leu to Phe) (srr3, srr4, and srr7) and one was at position 1163 (Cys to Phe) (srr18) in the S2 subunit. The receptor-binding activity examined by a virus overlay protein blot assay and by a coimmunoprecipitation assay showed that srr11 S protein had extremely reduced binding activity, while the srr7 and srr18 proteins had binding activity similar to that of wild-type cl-2 protein. However, when cell surface receptors were used for the binding assay, all srr mutants showed activity similar to that of the wild type or only slightly reduced activity. These results, together with our previous observations, suggest that amino acids located at positions 62 to 65 of S1, a region conserved among the MHV strains examined, are important for receptor-binding activity. We also discuss the mechanism by which srr mutants with a mutation in S2 showed high resistance to neutralization by a soluble receptor, despite their sufficient level of binding to soluble receptors.  相似文献   

9.
Two kinds of dehydropeptide analogs of enkephalin containing a delta Tyr unit at the N-terminus have been synthesized by coupling Boc-delta Tyr-(Cl2 Bzl)-OH with amino acid amides and tetrapeptide esters using the water soluble carbodiimide-HOBt method. Pentapeptides consisting of delta Tyr1, and delta Phe4 or delta Leu5 were also prepared. Ultraviolet difference spectroscopy was important in the characterization of the dehydro moieties, delta Tyr, delta Phe and delta Leu. Attempts to liberate delta Tyr1-enkephalins have been unsuccessful because of the instability of an N-terminal delta Tyr residue having p-phenolic group in the side chain.  相似文献   

10.
Predictive and spectroscopic methods were used to develop a model of the structures of the 1-34 peptides of parathyroid hormone (PTH) and the PTH-related protein (PTHrP). Circular dichroism (CD) studies of bovine PTH-(1-34) and human PTHrP-(1-34)amide in the presence of trifluoroethanol suggest the presence of 24-26 alpha-helical residues. For both peptides, interactions between amino- and carboxyl-region alpha-helices are predicted to result in a hydrophobic core with externally facing hydrophilic residues that include probable determinants of receptor binding and activation. Two such residues, Ser3 and Gln6, are conserved in all known members of the PTH/PTHrP family. We have synthesized 13 novel analogues of bovine PTH-(1-34) monosubstituted at positions 3 and 6 and have determined their biological activities in renal and bone cell radioreceptor and adenylyl cyclase assays. Position 3 analogues displayed biological activity that was reduced in direct proportion to the volume of the substituent side-chain. Position 6 analogues also displayed reduced biological activity, but no simple correlation with side-chain volume or hydrophobicity was evident. The analogues fully displaced labeled PTH from binding sites in renal membranes and bone cells, but [Phe3]bPTH-(1-34), [Tyr3]bPTH-(1-34), [Phe6] bPTH-(1-34), and [Ser6]bPTH-(1-34) were only partial agonists in one or both adenylyl cyclase assays. Of these, [Phe3]bPTH-(1-34) and [Phe6]bPTH-(1-34) were tested for antagonist activity and were found to inhibit the activation of adenylyl cyclase in response to bPTH-(1-34) or hPTHrP-(1-34)amide. These results indicate that positions 3 and 6 contribute important determinants of PTH receptor binding and activation. Modification at these positions represents a novel approach to the development of antagonists of PTH action.  相似文献   

11.
Phe-tRNA Phe from yeast containing 2-thiocytidine or 5-iodocytidine in position 75 of the polynucleotide chain or Phe-tRNA Phe in which both positions 74 and 75 were substituted by 5-iodocytidine were investigated in the poly U-dependent polyphenylalanine synthesis on ribosomes from rabbit reticulocytes. Phe-tRNA Phe-Cps2CpA was nearly as active as the native Phe-tRNA Phe-CpCpA in the overall process. Phe-tRNA Phe-Cpi 5CpA as well as Phe-tRNA Phe-i5Cpi 5CpA were considerably less active than the native species. Investigation of individual steps of protein biosynthesis with these modified substrates revealed that the donor activity of peptidyl-tRNAs which contain 5-iodocytidine in their 3'-terminus is strongly imparied suggesting exacting structural requirements for the interaction of the CpCpA end of tRNA with the ribosomal P-site.  相似文献   

12.
The novel amide linked angiotensin II (ANG II) cyclic analogues: gamma, epsilon -cyclo(3, 5)-[Sar(1)-Glu(3)-Lys(5)-Ile(8)] ANG II (I) and gamma, epsilon -cyclo(3, 5)-[Sar(1)-Glu(3)-Lys(5)-Phe(8)] ANG II (II) have been designed, synthesized and bioassayed in anesthetized rabbits in order to unravel structural ring cluster characteristics important for receptor activation. Analogue I with Ile at position 8 was an inhibitor of Angiotensin II while analogue II with Phe at position 8 was found to be an agonist. Similar results were reported for cyclic compounds that have reversed the linking between positions 3 and 5. The overall results show that positions 3 and 5 do not govern the biological activity of the synthetic analogues. It also appears that the aromatic ring cluster (Tyr-His-Phe) in agonist peptides is an essential stereo-electronic feature for Angiotensin II to exert its biological activity. A non-peptide mimetic of ANG II, 1-[2'-[(N-benzyl)tetrazol-5-yl]biphenyl-4-yl]methyl]-2-hydroxymethylbenzimidazole (BZI8) has been designed and synthesized. This molecule is more rigid and much less active than AT(1) non-peptide mimetic losartan probably because it lacks to mimic the orientation of tetrazole and the pharmacophore segments of butyl chain and imidazole ring.  相似文献   

13.
The enzymatic activity and sterol substrate specificity of acyl coenzyme A:cholesterol acyltransferase (ACAT) were measured in microsomes of cells from Heliothis zea. Under standard assay conditions, the specific enzymatic activity of ACAT was highest in the intestine followed by the fat body and ovary (380.7, 30.7, 8.3 pmol/min per mg, respectively). The structure of the exogenous sterol used in the ACAT assay affected its rate of esterification. The relative rates of esterification of analogs of cholesterol with various modifications of the side chain were: 24-H greater than 24 alpha-CH3 greater than delta 22 greater than delta 24 greater than 24 alpha-C2H5 greater than 24 beta-CH3, delta 22-24 beta-CH3 and delta 22-24 alpha-C2H5. The number and position of double bonds in the B-ring of the sterol nucleus greatly affected the rate of esterification of sterols by ACAT. The average relative rates of esterification of sterols with differences in their B-rings were: delta 7 much greater than delta 8 greater than delta 0 greater than delta 5 greater than delta 5.7. The presence of a 9,14-cyclopropane group and/or methyl groups at the C-4 and 14 positions prevented significant esterification of such sterols. The formation of cholesteryl and lathosteryl esters was partially inhibited in microsomes from the intestine, fat body, and ovary by the addition of the ACAT inhibitor, 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]prop anamide (Sandoz Compound 58-035).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Footprinting mRNA-ribosome complexes with chemical probes.   总被引:11,自引:3,他引:8       下载免费PDF全文
We footprinted the interaction of model mRNAs with 30S ribosomal subunits in the presence or absence of tRNA(fMet) or tRNA(Phe) using chemical probes directed at the sugar-phosphate backbone or bases of the mRNAs. When bound to the 30S subunits in the presence of tRNA(fMet), the sugar-phosphate backbones of gene 32 mRNA and 022 mRNA are protected from hydroxyl radical attack within a region of about 54 nucleotides bounded by positions -35 (+/- 2) and +19, extending to position +22 when tRNA(Phe) is used. In 70S ribosomes, protection is extended in the 5' direction to about position -39 (+/- 2). In the absence of tRNA, the 30S subunit protects only nucleotides -35 (+/- 2) to +5. Introduction of a stable tetraloop hairpin between positions +10 and +11 of gene 32 mRNA does not interfere with tRNA(fMet)-dependent binding of the mRNA to 30S subunits, but results in loss of protection of the sugar-phosphate backbone of the mRNA downstream of position +5. Using base-specific probes, we find that the Shine-Dalgarno sequence (A-12, A-11, G-10 and G-9) and the initiation codon (A+1, U+2 and G+3) of gene 32 mRNA are strongly protected by 30S subunits in the presence of initiator tRNA. In the presence of tRNA(Phe), the same Shine-Dalgarno bases are protected, as are U+4, U+5 and U+6 of the phenylalanine codon. Interestingly, A-1, immediately preceding the initiation codon, is protected in the complex with 30S subunits and initiator tRNA, while U+2 and G+3 are protected in the complex with tRNA(Phe) in the absence of initiator tRNA. Additionally, specific bases upstream from the Shine-Dalgarno region (U-33, G-32 and U-22) as well as 3' to the initiation codon (G+11) are protected by 30S subunits in the presence of either tRNA. These results imply that the mRNA binding site of the 30S subunit covers about 54-57 nucleotides and are consistent with the possibility that the ribosome interacts with mRNA along its sugar-phosphate backbone.  相似文献   

15.
Soybean sterol methyltransferase (SMT) in the presence of AdoMet catalyzes the transmethylation of the delta24-bond of the sterol side chain to produce phytosterols with a methyl(lene) or ethyl(idene) group at C-24. The function of six aromatic amino acids associated with the putative active center of the SMT, i.e., Region 1 that extends from Phe82 to Phe93 in soybean SMT, was studied by site-directed mutagenesis and heterologous expression in BL21(DE3) bacterial cells. The enzyme-generated products were characterized kinetically and by GC-MS analysis. Substitution of the aromatic amino acids at positions 82, 83, 85, 87, 91, and 93 with a leucine residue produced mutant SMTs with varying activities. The mutants converted cycloartenol to 24(28)-methylene cycloartanol [C1-activity] from a few percent to as much as 95% of the control activity. In contrast, none of the leucine mutants were found to catalyze 24(28)-methylene lophenol [C2-activity], suggesting a loss of function associated with the second C1-transfer activity. In contrast to the loss of the second C1-transfer activity of the Phe82Leu, replacement of the Phe82 residue to isoleucine had minimal effect on the first or second C1-transfer activities, suggesting that the increased bulk (branching) in the leucine side chain contributes to significant perturbations in the active site that generate inaccurate positioning of the substrate side chain disfavoring the second C1-transfer activity. Replacement of Tyr83 to phenylalanine resulted in an increase of the specificity constant (kcat/Km) for the substrate of the second C1-transfer activity by a factor of 5 compared to control and an increase of delta24(28)Z-ethylidene sterol formation in the 24-ethyl sterol product set, suggesting that loss of steric bulk from the phenolic hydroxyl group on tyrosine generates a less precise fit of the delta24(28) sterol side chain into the active site favoring the second C1-transfer activity and prompting reaction channeling during catalysis. Circular dichroism spectra, equilibrium dialysis studies of AdoMet, and chromatographic information of the wild-type and Tyr83 mutants confirmed retention of the overall conformation of the enzyme during the experiments. Together, these findings suggest that the amino acids of Region 1 provide a tight substrate orientation imposed by hydrophobic interactions between the sterol side chain and the SMT active site contacts and control the production and processing of the transmethylation pathways governed by the first and second C1-transfer activities.  相似文献   

16.
Three mRNA analogs--derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position--were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNA(Phe) was used, while tRNA(Val) was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions -3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with soft UV light (lambda > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions -1 to +3 binds to G1207, while that in positions -2 or -3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the -3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the -3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

17.
The mammalian skeletal muscle acetylcholine receptor contains two nonequivalent acetylcholine binding sites, one each at the alpha/delta and alpha/gamma subunit interfaces. Alpha-Conotoxin MI, a 14-amino acid competitive antagonist, binds at both interfaces but has approximately 10(4) higher affinity for the alpha/delta site. We performed an "alanine walk" to identify the residues in alpha-MI that contribute to this selective interaction with the alpha/delta site. Electrophysiological measurements with Xenopus oocytes expressing normal receptors or receptors lacking either the gamma or delta subunit were made to assay toxin-receptor interaction. Alanine substitutions in most amino acid positions had only modest effects on toxin potency at either binding site. However, substitutions in two positions, proline-6 and tyrosine-12, dramatically reduced toxin potency at the high-affinity alpha/delta site while having comparatively little effect on low-affinity alpha/gamma binding. When tyrosine-12 was replaced by alanine, the toxin's selectivity for the high-affinity site (relative to that for the low-affinity site) was reduced from 45,000- to 30-fold. A series of additional amino acid substitutions in this position showed that increasing side chain size/hydrophobicity increases toxin potency at the alpha/delta site without affecting alpha/gamma binding. In contrast, when tyrosine-12 is diiodinated, toxin binding is nearly irreversible at the alpha/delta site but also increases by approximately 500-fold at the alpha/gamma site. The effects of position 12 substitutions are accounted for almost entirely by changes in the rate of toxin dissociation from the high-affinity alpha/delta binding site.  相似文献   

18.
We have examined the effects of the Led-NPF-I peptide (Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-amide) and a series of ten analogues on the heart contractile activity of Tenebrio molitor and Zophobas atratus, and the structure-activity relationships for cardioactive action of Led-NPF-I were established. A video microscopy technique and computer-based method of data acquisition and analysis were used to study the action of the peptides on continuously perfused heart preparations. Cardiac activity was progressively inhibited by Led-NPF-I when the peptide concentrations were increased from 10(-9) to 10(-5) M. Substitution of the L-proline residue at position 4 of the native peptide with hydroxyproline, valine or D-proline caused a loss of cardioinhibitory activity. Also, replacement of arginine residues at all three positions 2, 7 and 9 with another basic amino acid histidine, reduces cardioinhibitory action of Led-NPF-I. Some modifications of the C-terminal residues, as the Phe(4-NO2)-, Phe(4-NH2)- and Phe(4-NMe2)-analogues, resulted in agonistic peptides with biological activity similar to that of the native peptide. However, three other C-terminal analogues tested [Tyr10]-, [D-Phe10]-Led-NPF-I, and Ala-Arg-Gly-Pro-Gln-Leu-Arg-Leu-Arg-Phe-OH were inactive in the heart bioassay, which suggests that this end of the amino acid chain may play an important role in bioactivity and interaction of the native peptide with its receptor on the myocardium.  相似文献   

19.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

20.
The molecular and crystal structures of two N alpha-protected tripeptide amides, containing in the central position the alpha-beta-dehydro-amino acid residue delta Phe (Z-configurational isomer), were determined by X-ray diffraction. While Z-Gly-delta Phez-L-Pro-NH2 is characterized in the crystal state by the presence of a type I beta-bend conformation (at the delta Phez-L-Pro sequence), Z-D-Ala-delta Phez-Gly-NH2 is folded into two consecutive beta-bends (type II' followed by type I), at the D-Ala-delta Phez and delta Phez-Gly sequences, respectively. In both cases the achiral delta Phez residue adopts a set of phi, psi angles typical of the right-handed helical conformation. The delta Phe residue may be exploited to design aromatic peptides with preferred secondary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号