首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The metabolism of chromosomal proteins has been studied in the pancreas, liver, and kidney of adult mice (a) by measuring the rates of glycine-N15 incorporation into histones and residual chromosome fractions, and (b) by measuring the extent to which N15, once incorporated into chromosomal proteins, is retained. 2. The uptake of isotopic nitrogen by these nuclear constituents was compared with that of protein fractions prepared from the cytoplasm by differential centrifugation in sucrose solutions. One such fraction, which comprises the bulk of the ribosenucleoprotein of the cell sediments as a pellet on high speed centrifugation. The supernatant remaining after this centrifugation is a fraction which, in the pancreas, is rich in the secretory enzymes synthesized by the cell. 3. A comparison of the rates of glycine-N15 uptake shows that cytoplasmic ribonucleoprotein is the most active of the protein fractions analyzed. In the pancreas it meets the conditions required of a precursor for the secretory enzymes of the supernate. 4. In all tissues considered the rates of glycine-N15 uptake into histone and residual chromosome fractions are lower, that for histone being the lowest of any of the protein components considered and that for residual protein approximating the over-all rate for cytoplasmic protein. 5. The effects of feeding and fasting upon glycine-N15 incorporation have been studied. In the pancreas, feeding causes a sharp increase in N15 uptake by the mixed tissue proteins and by the nucleoprotein and supernatant protein of the cytoplasm. There is a parallel increase in N15 uptake by the chromosomal constituents—histone and residual protein. 6. A parallelism between N15 uptake in cytoplasmic and chromosomal proteins is also observed in the liver and kidney when over-all protein metabolism is altered by feeding and fasting. 7. The responsiveness of the histones and residual proteins to changes in the environment has also been demonstrated in N15 retention experiments. The loss of isotope once incorporated into chromosomal proteins is much more rapid in fed than in fasted animals.  相似文献   

2.
Formation of protein in the pancreas   总被引:7,自引:0,他引:7  
1. The total known secretory enzyme content of the mouse pancreas has been determined and found to represent about 20 per cent of the weight of the dry, fat-free tissue. 2. The changes in secretory enzyme content that occur during the cycle of secretion and synthesis have been measured. 3. In the course of the cycle no significant changes have been found in DNA or RNA content of pancreatic tissue. 4. Constancy of DNA content, along with other observations, indicates that total protein content of the gland remains substantially unchanged during the cycle of secretion and synthesis. These facts point to the conclusion that following upon the secretion of enzyme protein, synthesis of new protein takes place relatively rapidly in the exocrine cells of the pancreas and this protein is then gradually transformed into the characteristic pancreatic enzyme proteins.  相似文献   

3.
In fetal rat pancreas cytodifferentiation occurs between day 14 and day 20 of gestation and is accompanied by an exponential increase in the cellular accumulation of tissue specific proteins and an elaboration of the cellular organelles associated with their synthesis and secretion. Evaluation of RNA synthesis by [3H] uridine incorporation into trichloroacetic acid precipitable material showed that during this period the apparent rate of RNA synthesis increased 7.5 fold from 2 × 103 dpm/μg DNA/h on day 15 to 1.5 × 104 dpm/μg DNA/h on day 19; [3H] leucine uptake showed that the rate of protein synthesis increased about the same extent with the major difference being that the maximum rate of protein synthesis occurred on day 19, one day after the maximum rate of RNA synthesis. The soluble pyrimidine nucleotide pools decreased from 122 pmol/μg DNA on day 14 to 15 pmol/μg DNA on day 16 followed by an increase to 104 pmol/μg DNA on day 19; the purine nucleotide pools decreased from 367 pmol/μg DNA on day 14 to 286 pmol/μg DNA on day 16 and then increased to 635 pmol/μg DNA on day 19. These values roughly paralleled the transitions observed in the rates of RNA and protein synthesis. Agarose-acrylamide slab gel electrophoresis showed an increase in RNA synthesis and an increase in ribosomal RNA synthesis and processing with cytodifferentiation.  相似文献   

4.
M13 procoat protein is processed to transmembrane coat protein by dog pancreas microsomes after completion of synthesis and in the absence of the signal recognition particle (SRP)/docking protein system. ATP is required for fast and efficient processing of procoat protein by microsomes in a reticulocyte lysate. Requirement for ATP is also observed in the absence of ribosomes or docking protein. This indicates the existence of a unique assembly pathway for procoat protein into microsomes which depends on ATP but does not depend on the SRP/docking protein and ribosome/ribosome receptor systems. We suggest that the ATP requirement is linked to a so far unknown component of the reticulocyte lysate, acting on transport competence of precursor proteins.  相似文献   

5.
Genomic replication of the negative-strand RNA viruses is dependent upon protein synthesis. To examine the requirement for protein synthesis in replication, we developed an in vitro system that supports the genome replication of defective interfering particles of the negative-strand rhabdovirus vesicular stomatitis virus (VSV), as a function of protein synthesis (Wertz, J. Virol. 46:513-522, 1983). The system consists of defective interfering nucleocapsid templates and an mRNA-dependent reticulocyte lysate to support protein synthesis. We report here an analysis of the requirement for individual viral proteins in VSV replication. Viral mRNAs purified by hybridization to cDNA clones were used to direct the synthesis of individual proteins in the in vitro system. By this method, it was demonstrated that the synthesis of the VSV nucleocapsid protein, N, alone, resulted in the replication of genome-length RNA by both defective interfering intracellular nucleocapsids and virion-derived nucleocapsids. Neither the viral phosphoprotein, NS, nor the matrix protein, M, supported RNA replication. The amount of RNA replication for a given amount of N protein was the same in reactions in which either all of the VSV proteins or only N protein were synthesized. In addition, RNA replication products synthesized in reactions containing only newly made N protein assembled with the N protein to form nucleocapsids. These results demonstrate that the major nucleocapsid protein (N) can by itself fulfill the requirement for protein synthesis in RNA replication and allow complete replication, i.e., initiation and elongation, as well as encapsidation of genome-length progeny RNA.  相似文献   

6.
7.
Perfused rat livers and isolated rat hepatocytes exhibited a 50% decrease in the secretion of both albumin and total secretory proteins after thyroidectomy. In contrast, synthesis of non-secretory proteins was decreased by only 20% from the rates observed in liver preparations from euthyroid rats. These observations suggested a disproportionate effect of thyroidectomy on the synthesis of secretory proteins compared with non-secretory proteins. Disproportionate decreases in the synthesis of albumin in other endocrine-deficient states such as hypophysectomy and diabetes had previously been shown to be associated with decreases of similar magnitude in the relative abundance of albumin-mRNA sequences. In contrast, thyroidectomy did not affect the activity or amount of albumin mRNA in total liver poly(A)-containing RNA when assayed by cell-free translation and by hybridization with complementary DNA, respectively. Furthermore, labelling experiments in vivo demonstrated that albumin synthesis represented 12.9 +/- 0.5% and 12.4 +/- 0.4% of total protein synthesis in livers of thyroidectomized and euthyroid rats respectively. Therefore the fall in secretion of albumin and total secretory protein after thyroidectomy did not appear to be a reflection of disproportionate decreases in the synthesis of these proteins. Instead, defects in steps involved in the post-synthetic processing and secretion of albumin are suggested. A number of comparisons, including ribosome half-transit times, the size distributions of total and albumin-synthesizing polyribosomes, and the fraction of RNA present as inactive ribosomes, provided evidence that the overall decrease in protein synthesis after thyroidectomy was not due to generalized alterations in translational processes. Instead, the decrease in total protein synthesis appeared to reflect the RNA content of the liver, which fell in proportion to th decrease in protein synthesis.  相似文献   

8.
When cytoplasmic protein synthesis is inhibited by cycloheximide (CHI) in vivo synthesis of water-soluble mitochondrial proteins and of mitochondrial RNA is decreased. These changes measured in isolated rat liver mitochondria are similar to those observed in vivo and correlate with the changes the synthesis of water-soluble proteins in mitochondria. When the cytoplasmic fraction (30,000 g-supernatant) had been added to the mitochondria showing decreased RNA synthesis, the RNA synthesis increased to the control level (the incubation conditions were favourable for the protein transport from microsomes to mitochondria). RNA synthesis in mitochondria was not stimulated by cytoplasmic fractions from the CHI-pretreated rats. After prolonged dialysis these fraction stimulated RNA synthesis even to a greater extent than cytoplasmic fractions from the untreated animals. Mitochondrial RNA polymerase activity (measured in mitochondrial extracts supplemented with exogenous DNA) was higher in extracts of mitochondria from livers of normal rats than in extracts of mitochondria from livers of animals injected with CHI.  相似文献   

9.
Summary This study indictes the complexity of cell function in one tissue. Cells of the larval salivary gland produce their secretion both by synthesis of some proteins and extraction of different proteins from the hemolymph by selective uptake and concentration. Uptake and transport are not dependent on de novo protein synthesis, at least for several hours and, as would be expected, are also not immediately dependent on new RNA synthesis. De novo synthesis of secretory proteins by the gland is almost completely inhibited by puromycin but occurs on RNA templates which are stable for at least 12 hr. Both the large cells forming most of the gland and the smaller cells forming the duct and the base of the duct are capable of taking up hemal, proteins, but synthesis of secretory proteins probably occurs only in the large cells.  相似文献   

10.
Protein synthesis and secretion during in vitro pancreatic development and after treatment with the glucocorticoid dexamethasone and the thymidine analog 5-bromodeoxyuridine (BrdU) was monitored using two-dimensional gel electrophoresis. At 14 days gestation, the synthesis of more than 200 proteins and the secretion of a complex set of proteins was detected. The relative rate of synthesis and secretion of the majority of this set of proteins decreased dramatically during development; after 6 days of culture most were no longer detected. In contrast, the synthesis and secretion of pancreas-specific exocrine proteins amylase, a Sepharose binding protein (protein 2), and chymotrypsinogen first detected after one day in culture, increased throughout the 6-day culture period. Other pancreatic digestive (pro)enzymes normally found in the adult such as the basic form of chymotrypsinogen, lipase, ribonuclease, and trypsinogen were not detected during the culture period. Thus at least two distinct regulatory events are involved in the expression of the exocrine genes during development. Dexamethasone treatment during the 6-day culture period selectively increased the synthesis of amylase and several other minor secretory proteins. BrdU treatment caused major changes in the protein synthetic and secretory patterns of the pancreas as well as in morphogenesis. BrdU treated pancreases showed greatly reduced synthesis of amylase, protein 2, and chymotrypsinogen and prolonged synthesis of many proteins normally detected only at early stages of pancreatic development. BrdU treatment also stimulated the secretion of a set of proteins ostensibly associated with duct cells. Thus, BrdU specifically alters the developmental program of the pancreas.  相似文献   

11.
Rat liver, liver homogenates, and microsome fractions separated therefrom were examined systematically in the electron microscope in sections of OsO(4)-fixed, methacrylate-embedded tissue and pellets. It was found that most microsomes are morphologically identical with the rough surfaced elements of the endoplasmic reticula of hepatic cells. They appear as isolated, membrane-bound vesicles, tubules, and cisternae which contain an apparently homogeneous material of noticeable density, and bear small, dense particles (100 to 150 A) attached to their outer aspect. In solutions of various osmolar concentrations they behave like osmometers. The findings suggest that they derive from the endoplasmic reticulum by a generalized pinching-off process rather than by mechanical fragmentation. The microsome fractions contain in addition relatively few vesicles free of attached particles, probably derived from the smooth surfaced parts of the endoplasmic reticula. Dense, peribiliary bodies represent a minor component of the same fractions. The microsomes derived from 1 gm. wet weight liver pulp contained (averages of 10 experiments) 3.09 mg. protein N, 3.46 mg. RNA (RNA/protein N = 1.12), and 487 microg. phospholipide P. They displayed DPNH-cytochrome c reductase activity and contained an alcohol-soluble hemochromogen. The microsome preparations proved resistant to washing and "aging." Treatment with versene and incubation with ribonuclease (30 minutes at 37 degrees C.) resulted in appreciable losses of RNA and in partial or total disappearance of attached particles. Treatment with deoxycholate (0.3 to 0.5 per cent, pH = 7.5) induced a partial clarification of the microsome suspensions which, upon centrifugation, yielded a small pellet of conglomerated small, dense particles (100 to 150 A) with only occasionally interspersed vesicles. The pellet contained approximately 80 to 90 per cent of the RNA and approximately 20 per cent of the protein N of the original microsomes. The supernatant accounted satisfactorily for the materials lost during deoxycholate treatment. The findings suggest that the microsomal RNA is associated with the small particles whereas most of the protein and nearly all of the phospholipide, hemochromogen, and DPNH-cytochrome c reductase activity are associated with the membrane or content of the microsomes.  相似文献   

12.
Virus-encoded movement proteins (MPs) mediate cell-to-cell spread of viral RNA through plant membranous intercellular connections, the plasmodesmata. The molecular pathway by which MPs interact with viral genomes and target plasmodesmata channels is largely unknown. The 9-kDa MP from carnation mottle carmovirus (CarMV) contains two potential transmembrane domains. To explore the possibility that this protein is in fact an intrinsic membrane protein, we have investigated its insertion into the endoplasmic reticulum membrane. By using in vitro translation in the presence of dog pancreas microsomes, we demonstrate that CarMV p9 inserts into the endoplasmic reticulum without the aid of any additional viral or plant host components. We further show that the membrane topology of CarMV p9 is N(cyt)-C(cyt) (N and C termini of the protein facing the cytoplasm) by in vitro translation of a series of truncated and full-length constructs with engineered glycosylation sites. Based on these results, we propose a topological model in which CarMV p9 is anchored in the membrane with its N- and C-terminal tail segments interacting with its soluble, RNA-bound partner CarMV p7, to accomplish the viral cell-to-cell movement function.  相似文献   

13.
14.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

15.
In isolated pancreatic acinar cells from the guinea pig stimulation of enzyme secretion by carbamoylcholine is slightly diminished in the absence of extracellular Ca. LaCl3 in a concentration, which does not influence the secretory response to carbamoylcholine, nearly completely abolishes 45Ca uptake by cells, indicating that Ca uptake is not necessary for secretion. In cells preloaded with 45CaCl2, addition of carbamoylcholine leads to an immediate release of 45Ca, which can be blocked by atropine or 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate and is not influences by LaCl3 in concentrations, which do not inhibit secretion. A similar release of 45CaCl2 from preloaded cells is obtained by addition of the mitochondrial inhibitors antimycin A, carbonylcyanide p trifluoromethoxyphenylhydrazone (FCCP), and oligomycin. Possibly due to markedly diminished ATP levels, neither antimycin A nor FCCP act as secretagogues, both compounds being inhibitors of secretion. Oligomycin, which decreases ATP levels only to 20%, stimulates secretion. Mitochondria and microsomes from pancreatic tissue are able to accumulate 45Ca. Mitochondrial 45Ca uptake can be driven by ATP or active respiration and is inhibited by NaN3, oligomycin, antimycin A or FCCP. Microsomal 45Ca uptake is ATP-dependent. NaN3 and mitochondrial inhibitors have no influence on microsomal 45Ca uptake, which is stimulated several-fold by oxalate. The results support the assumption, that in the guinea pig pancreas Ca mobilization from intracellular stores is necessary to initiate secretion. Due to their ability for an active accumulation of45Ca both mitochondria and microsomes could serve as intracellular calcium stores.  相似文献   

16.
Proteins synthesized and secreted during rat pancreatic development   总被引:6,自引:2,他引:4       下载免费PDF全文
The synthesis and secretion of proteins during development of the pancreas was analyzed using two-dimensional gel electrophoresis. The pattern of synthesis of the total proteins of the pancreas was found to change very little from 14 to 18 d gestation. In addition, the protein synthetic pattern of the embryonic pancreas was very similar to the protein patterns of several other embryonic tissues (gut, lung, and mesenchyme). Between 18 d gestation and the adult stage, the synthesis of the majority of protein species fades as the synthesis of the secretory (pro)enzymes becomes dominant. Thus, the terminal differentiation of the pancreas appears to involve the dominant expression of a limited set of genes (coding, in part, for the digestive [pro]enzymes) while the pattern of expression of the remaining domain remains relatively unchanged. Many of the secretory (pro)enzymes were identified and their synthesis during development was monitored. The synthesis of several secretory proteins was detected between 15 and 18 d gestation (e.g., amylase and chymotrypsinogen), whereas the synthesis of others was not detected until after 18 d gestation (i.e., trypsinogen, ribonuclease, proelastase, and lipase). Between 18 d gestation and the adult stage, the synthesis of the digestive (pro)enzymes increases to > 90% of pancreatic protein synthesis. The secretion of digestive (pro)enzymes was detected as early as 15 d gestation. The selective release of a second set of proteins was detected in the early embryo. These proteins are not detected in the adult pancreas or in zymogen granules but are also released by several other embryonic tissues. The function of this set of proteins is unknown.  相似文献   

17.
During the reproductive period (spring) under the control of testosterone the epididymis of the viviparous lizard secretes a group of major proteins with an approximate Mr of 19,000 named L protein(s). These proteins are recognized by a specific immunoserum and bind to the heads of spermatozoa. During spring, translation in reticulocyte lysate of RNA from secreting epididymis (stage 6) produced 5 immunoprecipitable bands with Mr values from 21,500 to 25,000. Such synthesis is undetectable during sexual rest in summer (stage 1). The 5 bands disappear when translation is performed in the presence of dog pancreas microsomes although a new band of Mr 19 000 becomes prominent. This suggests that synthesis of L protein involves two steps, i.e. synthesis of precursors (L preproteins) followed by a maturation process. At least 11 translation products (including L-preproteins) are involved in annual variations that follow the differentiation of the epididymal epithelial cells and their androgen dependency was studied by castration and in-vitro stimulation by testosterone. In these conditions, testosterone is able to control accumulation of RNA corresponding to L preproteins and to a translation product of Mr 29 000.  相似文献   

18.
In many eukaryotic cells, protein secretion is regulated by extracellular signalling molecules giving rise to increased intracellular Ca2+ and activation of kinases and phosphatases. To test whether components involved in the first step of secretion, the translocation of proteins across the endoplasmic reticulum (ER) membrane, are regulated by Ca2+-dependent phosphorylation and dephosphorylation, we have investigated the effect of Ca2+ on kinases associated with the rough ER. Using purified rough microsomes from dog pancreas we found that Ca2+-dependent isoforms of protein kinase C (PKC) are associated with the rough ER and phosphorylate essential components of the protein translocation machinery. Phosphorylation of microsomal proteins by PKCs increased protein translocation efficiency in vitro. We also found that proteins of the translocation machinery became phosphorylated in intact cells. This suggests a further level of regulation of protein translocation across the ER membrane.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号