首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between intestinal epithelial cells andperipheral neuronal cells were examined using an invitro coculture system. Two cell lines, Caco-2 and PC12, were usedfor this experiment as an intestinal epithelial and entericneuronal cell model, respectively. By coculturing with fullydifferentiated Caco-2 cells, the neurite outgrowth was inducedin PC12 cells. This neurite outgrowth in PC12 was blocked byanti-nerve growth factor (NGF) polyclonal antibodies,suggesting that the neurite outgrowth in PC12 during thecoculture with Caco-2 cells was due to NGF secreted fromCaco-2 cells. On the other hand, coculturing with fullydifferentiated PC12 cells induced the decrease oftransepithelial electrical resistance in Caco-2 cellmonolayers. The permeability of lucifer yellow alsosignificantly increased, suggesting that the barrier functionand paracellular permeability of Caco-2 monolayers werealtered by coculturing with PC12 cells. The present studysuggests that this in vitro coculture system is a good modelfor the functional analysis of interaction among intestinalepithelial cells with different cell types.  相似文献   

2.
The effect of neuronal cells on the functional properties of intestinal epithelial cells was examined by using an in vitro coculture system. Two cell lines, Caco-2 and PC12, were respectively used as intestinal epithelial and enteric neuronal cell models. Coculture of differentiated Caco-2 cells with PC12 caused a significant decrease in the transepithelial electrical resistance (TER) value of the Caco-2 monolayer. The permeability to lucifer yellow (LY) was also significantly increased, suggesting that the tight junction (TJ) of the Caco-2 monolayers was modulated by coculturing with PC12. To identify the TJ-modulating factor presumably secreted from PC12, the effects of the major neurotransmitters on the TER value and LY transport were examined, but no influence was apparent. The TJ-modulating effect of PC12 was prevented by exposing PC12 to cycloheximide, suggesting that new protein synthesis in PC12 was necessary for this regulation.  相似文献   

3.
Passive paracellular absorption, regulated by tight junctions (TJs), is the main route for absorption of poorly absorbed hydrophilic substances. Surface active substances, such as fatty acids, may enhance absorption of these substances by affecting the integrity of TJ and increasing the permeability. It has been suggested that aluminium (Al) absorption occurs mainly by the paracellular route. Herein, we investigated if physiologically relevant exposures of fully differentiated Caco-2 cell monolayers to oleic acid and docosahexaenoic acid (DHA), which are fatty acids common in food, increase absorption of Al and the paracellular marker mannitol. In an Al toxicity test, mannitol and Al absorption through Caco-2 cell monolayers were similarly modulated by Al concentrations between 1 and 30 mM, suggesting that absorption of the two compounds occurred via the same pathways. Exposure of Caco-2 cell monolayers to non-toxic concentrations of Al (2 mM) and 14C-mannitol in fatty acid emulsions (15 and 30 mM oleic acid, 5 and 10 mM DHA) caused a decreased transepithelial electrical resistance (TEER). Concomitantly, fractional absorption of Al and mannitol, expressed as percentage of apical Al and mannitol retrieved at the basolateral side, increased with increasing dose of fatty acids. Transmission electron microscopy was applied to assess the effect of oleic acid on the morphology of TJ. It was shown that oleic acid caused a less structured morphology of TJ in Caco-2 cell monolayers. Taken together our findings indicate that fatty acids common in food increase the paracellular intestinal absorption of Al. These findings may influence future risk assessment of human Al exposure.  相似文献   

4.
The aim of this study was to investigate the effect of methylated N-(4-N,N-dimethylaminobenzyl) chitosan, TM-Bz-CS, on the paracellular permeability of Caco-2 cell monolayers and its toxicity towards the cell lines. The factors affecting epithelial permeability, e.g., degree of quaternization (DQ) and extent of dimethylaminobenzyl substitution (ES), were evaluated in intestinal cell monolayers of Caco-2 cells using the transepithelial electrical resistance and permeability of Caco-2 cell monolayers, with fluorescein isothiocyanate dextran 4,400 (FD-4) as a model compound for paracellular tight-junction transport. Cytotoxicity was evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide viability assay. The results revealed that, at pH 7.4, TM-Bz-CS appeared to increase cell permeability in a concentration-dependent manner, and this effect was relatively reversible at lower doses of 0.05–0.5 mM. Higher DQ and the ES caused the permeability of FD-4 to be higher. The cytotoxicity of TM-Bz-CS depended on concentration, %DQ, and %ES. These studies demonstrated that this novel modified chitosan has potential as an absorption enhancer.  相似文献   

5.
The effects of low concentrations of deoxynivalenol (DON) on structural and functional characteristics of human colonic adenocarcinoma cell lines Caco-2 and T84 were examined. Scanning electron microscopic (SEM) analysis of the apical surfaces of Caco-2 cells revealed reduction or abnormal formation of brush borders in the presence of 50, 100 and 200 ng/ml of DON. Monolayer integrity of Caco-2 and T84 cells was studied using cells which were cultured on permeable membranes. The transepithelial electrical resistance (TEER) of Caco-2 cells was significantly reduced at 50, 100 and 200 ng/ml of DON, significant increase in lucifer yellow (LY) permeability was also observed in these cells at 100 ng/ml of DON. The TEER of T84 cells was significantly reduced at 100 and 200 ng/ml of DON. LY permeability significantly increased at 200 ng/ml of DON in T84 cells. Enzyme activities in Caco-2 cells were also examined. Alkaline phosphatase activity was reduced from the 6th to 15th day of culture in the presense of 100 or 200 ng/ml of DON, whereas sucrase- isomaltase activity was significantly decreased by adding 50 or 100 ng/ml of DON for 15 or 20 days. Protein content was attenuated only by treatment with 200 ng/ml of DON thoughout the experimental period. The results indicate that DON interferes with structural and functional characteristics of differentiation in enterocytes at low doses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Human intestinal Caco-2 cells were cultured under serum-free conditions on an insoluble collagen and FCS matrix (Caco-2-SF), and a comparison was made between several characteristics of Caco-2 and Caco-2-SF cells. Their morphological appearance was identical. Slight differences were found in cell growth and expression of brush border enzymes between Caco-2 and Caco-2-SF cells. Similar levels of activity of Gly-Gly transport were expressed in both types of cell. Caco-2 cells cultured on permeable filters showed high transepithelial electrical resistance (TEER), indicating the high monolayer integrity. The transepithelial transport activity for glucose, alanine and Gly-Gly was detected by measuring the change in short-circuit current (Isc) after adding each of these nutrients to the apical chamber. In Caco-2-SF cells, such parameters as TEER and Isc were reduced drastically, suggesting that the monolayer integrity and cell polarity that are important for transepithelial transport were not attained. These parameters, however, could be restored by adding FCS or by milk whey. The result suggested that FCS and milk whey contain factors which regulate the formation of the tight junctions and, consequently, the development of cell polarity. Thus the Caco-2-SF cell-culture system will provide a useful model for studying factors which regulate the intestinal transepithelial transport functions.Abbreviations BCECF 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein - TEER transepithelial electrical resistance - LY lucifer yellow CH lithium salt  相似文献   

7.
Tight junctions (TJs) control paracellular permeability and apical-basolateral polarity of epithelial cells, and can be regulated by exogenous and endogenous stimuli. Dysregulated permeability is associated with pathological conditions, such as celiac disease and inflammatory bowel disease. Herein we studied the mechanism by which larazotide acetate, an 8-mer peptide and TJ regulator, inhibits the cellular changes elicited by gliadin fragments, AT-1002, and cytokines. Previously, we demonstrated that AT-1002, a 6-mer peptide derived from the Vibrio cholerae zonula occludens toxin ZOT, caused several biochemical changes in IEC6 and Caco-2 cells resulting in decreased transepithelial electrical resistance (TEER) and increased TJ permeability. In this study, larazotide acetate inhibited the redistribution and rearrangement of zonula occludens-1 (ZO-1) and actin caused by AT-1002 and gliadin fragments in Caco-2 and IEC6 cells. Functionally, larazotide acetate inhibited the AT-1002-induced TEER reduction and TJ opening in Caco-2 cells. Additionally, larazotide acetate inhibited the translocation of a gliadin 13-mer peptide, which has been implicated in celiac disease, across Caco-2 cell monolayers. Further, apically applied larazotide acetate inhibited the increase in TJ permeability elicited by basolaterally applied cytokines. Finally, when tested in vivo in gliadin-sensitized HLA-HCD4/DQ8 double transgenic mice, larazotide acetate inhibited gliadin-induced macrophage accumulation in the intestine and preserved normal TJ structure. Taken together, our data suggest that larazotide acetate inhibits changes elicited by AT-1002, gliadin, and cytokines in epithelial cells and preserves TJ structure and function in vitro and in vivo.  相似文献   

8.
In a previous study, we characterized Cd–Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation value of 0.3 μmol/L 203Hg was measured in the presence of 100 μmol/L unlabeled Hg in the serum-free exposure medium without modification in the initial uptake rate. This phenomenon was eliminated at 4C. Mercury induced an increase in tritiated water and [3H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 μmol/L Hg and 2 mmol/L N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects. Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport. During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and consequently cell capacity. Deceased 25 March 2004  相似文献   

9.
Hemorrhagic transformation is a major complication associated with tissue plasminogen activator (tPA) therapy for ischemic stroke. We studied the effect of tPA on the blood–brain barrier (BBB) function with our in vitro monolayer model generated using rat brain microvascular endothelial cells subjected either to normoxia or to hypoxia/reoxygenation (H/R) with or without the administration of tPA. The barrier function was evaluated by the transendothelial electrical resistance (TEER), the permeability of sodium fluorescein and Evans’ blue-albumin (EBA), and the uptake of lucifer yellow (LY). The permeability of sodium fluorescein and EBA was used as an index of paracellular and transcellular transport, respectively. The administration of tPA increased the permeability of EBA and the uptake of LY under normoxia. It enhanced the increase in the permeability of both sodium fluorescein and EBA, the decrease in the TEER, and the disruption in the expression of ZO-1 under H/R conditions. Administration of tPA could cause an increase in the transcellular transport under normoxia, and both the transcellular and paracellular transport of the BBB under H/R conditions in vitro. Even in humans, tPA may lead to an opening of the BBB under non-ischemic conditions and have an additional effect on the ischemia-induced BBB disruption.  相似文献   

10.
We studied formation of domes in cell monolayers of the human colon carcinoma cell line Caco-2 which has been shown to exhibit signs of enterocytic differentiation and transport properties. After a 24 hr incubation with 4 X 10(-8) M ouabain, the number of domes seen on Caco-2 cell monolayers grown on plastic dishes was not significantly altered. After a 90 min preincubation with ouabain, 86rubidium uptake by Caco-2 cells was inhibited by ouabain, indicating that the cells have an ouabain-sensitive Na+, K+-ATPase, while dome formation was unaffected by ouabain. Domes were observed in Caco-2 cell monolayers grown on Nuclepore filters when the pore size was 0.015 micron but not when it was 0.030 micron. Our results suggest that dome formation in the Caco-2 cell line could be independent of Na+, K+-ATPase activity and might be due to accumulation of molecules having an effective hydrodynamic radius comprised between 0.015 and 0.030 micron.  相似文献   

11.
Effects of capsaicin on human intestinal cell line Caco-2   总被引:1,自引:0,他引:1  
The influence of capsaicin processing on human intestinal cell line Caco-2 was examined by measuring transepithelial electrical resistance (TER). There was an increase in permeability at high concentration (200 to 500 μM) of capsaicin, and the effect was inhibited by pretreatment of capsazepine, which is a competitive antagonist of the vanilloid receptor 1 (VR1). LDH-activity as well as changes in intracellular Ca2+ were determined to know whether or not capsaicin affected TER activity through its influence on the tight junction. We also determined the expression of the VR1-like protein on Caco-2 cells in time-dependent manner by western blotting using vanilloid receptor (VR1) antiserum. Our results showed that the permeability increase by capsaicin was through binding to VR1-like protein of Caco-2 cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In the present study we analyzed the mechanisms of simvastatin toxicity for the PC3 human prostate cancer cell line. At 10 μM, simvastatin induced principally apoptosis, which was prevented by mevalonic acid but not by cyclosporin A, the inhibitor of calcineurin and mitochondrial permeability transition (MPT). At 60 μM, simvastatin induced the necrosis of PC3 cells insensitive to mevalonic acid. Cell necrosis was preceded by a threefold increase in cytosolic free Ca2+ concentration and a significant decrease in both respiration rate and mitochondrial membrane potential. Both mitochondrial dysfunction and necrosis were sensitive to the compounds cyclosporin A and bongkrekic acid, as well as the calcineurin inhibitor FK506. We have concluded that simvastatin-induced PC3 cells apoptosis is dependent on 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibition and independent of MPT, whereas necrosis is dependent on mitochondrial dysfunction caused, at least in part, by calcineurin.  相似文献   

13.
In this study, a novel nanoparticle system for paracellular transport was prepared using a simple and mild ionic-gelation method upon addition of a poly-gamma-glutamic acid (gamma-PGA) solution into a low-molecular-weight chitosan (low-MW CS) solution. The particle size and the zeta potential value of the prepared nanoparticles can be controlled by their constituted compositions. The results obtained by the TEM and AFM examinations showed that the morphology of the prepared nanoparticles was spherical in shape. Evaluation of the prepared nanoparticles in enhancing intestinal paracellular transport was investigated in vitro in Caco-2 cell monolayers. It was found that the nanoparticles with CS dominated on the surfaces could effectively reduce the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers. After removal of the incubated nanoparticles, a gradual increase in TEER was noticed. The confocal laser scanning microscopy observations confirmed that the nanoparticles with CS dominated on the surface were able to open the tight junctions between Caco-2 cells and allowed transport of the nanoparticles via the paracellular pathways.  相似文献   

14.
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model.We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria.We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation.Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function.  相似文献   

15.
There is a current interest in dietary compounds, such as green tea polyphenols, that can favor protection against a variety of brain disorders, including Alzheimer’s disease, ischemia, and stroke. The objective of the present study was to investigate the effects of (_)-epicatechin-3-gallate (ECG), one of three three major green tea antioxidants, on C6 lineage cells. Here, we evaluated cell morphology and integrity and specific astrocyte activities; glutamate uptake and secretion of S100B in the presence of 0.1, 1 and 10 μM ECG. During 6 h of incubation, cell morphology was altered only at 10 μM ECG; however, after 24 h of treatment, cells become stellate in the presence of all concentrations of ECG. Loss of cell integrity was observed after 24 h with 10 μM ECG and represented only 6% of cells, in contrast with 2% observed at basal conditions. ECG (1–10 μM) induced a decrease (about 36%) in glutamate uptake after 1 h of incubation. After 6 h, an opposite effect occurred and ECG induced a sustained increase in glutamate uptake of about 70% from 0.1 μM. In addition, a significant increase in S100B was observed at 1 μM ECG (36%) and 10 μM ECG (69%) after 1 h, in contrast to 6 h of treatment, where all doses of ECG induced a significant increase (about 60%) in S100B secretion. These data demonstrate that ECG induces a significant improvement in glutamate uptake and S100B secretion in C6 cells, indicating that ECG could contribute to the neuroprotective role of astroglial cells.  相似文献   

16.
The intestinal permeability of low-molecular-weight hyaluronan (LMW-HA) was investigated by using cultured monolayers of Caco-2 cells. The amount of LMW-HA that permeated the Caco-2 monolayers was measured by a carbazole assay. The permeability of LMW-HA increased inversely with the molecular size and was dose-dependent. The transport was observed to be energy-independent, and was correlated with the tight junction (TJ) permeability. These results suggest that LMW-HA permeated the Caco-2 cell monolayers via the paracellular pathway.  相似文献   

17.
The complex of vanadyl(IV) cation with oxodiacetate, VO(oda) caused an inhibitory effect on the proliferation of the human colon adenocarcinoma cell line Caco-2 in the range of 25–100 μM (P < 0.001). This inhibition was partially reversed by scavengers of free radicals. The difference in cell proliferation in the presence and the absence of scavengers was statistically significant in the range of 50–100 μM (P < 0.05). VO(oda) altered lysosomal and mitochondria metabolisms (neutral red and MTT bioassays) in a dose–response manner from 10 μM (P < 0.001). Morphological studies showed important transformations that correlated with the disassembly of actin filaments and a decrease in the number of cells in a dose response manner. Moreover, VO(oda) caused statistically significant genotoxic effects on Caco-2 cells in the low range of concentration (5–25 μM) (Comet assay). Increment in the oxidative stress and a decrease in the GSH level are the main cytotoxic mechanisms of VO(oda). These effects were partially reversed by scavengers of free radicals in the range of 50–100 μM (P < 0.05). Besides, VO(oda) interacted with plasmidic DNA causing single and double strand cleavage, probably through the action of free radical species. Altogether, these results suggest that VO(oda) is a good candidate to be evaluated for alternative therapeutics in cancer treatment.  相似文献   

18.
Bisnaphthalimido compounds bis-intercalate to DNA via the major groove and are potentially potent cancer therapeutics. Previously, we incorporated natural polyamines as linkers connecting the two naphthalimido ring moieties to create a series of soluble bisnaphthalimidopropyl polyamines (BNIPPs). Here, extending earlier work on bisnaphthalimidopropylspermidine (BNIPSpd)-induced apoptosis in colon adenocarcinoma Caco-2 cells, we compare the cytotoxicity and genotoxicity of BNIPSpd relative to the spermine and oxaspermine derivatives, bisnaphthalimidopropylspermine (BNIPSpm) and bisnaphthalimidopropyloxaspermine (BNIPOSpm). The order of cytotoxicity after 24 h was BNIPSpd (IC50 = 0.47 μM) > BNIPSpm (IC50 = 10.04 μM) > BNIPOSpm (IC50 >50 μM). After a 72-h BNIPOSpm exposure, an IC50 = 10.25 μM was achieved. With 4-h exposure to BNIPSpd or BNIPSpm or 12-h exposure to BNIPOSpm, concentrations ≥1 μM induced a significant dose-dependent increase in DNA damage as measured by alkaline single-cell gel electrophoresis. The longer incubation times required for BNIPOSpm to induce DNA strand breaks reflect a slower rate of BNIPOSpm cellular distribution as monitored via BNIPP fluorescence within the cells. Moreover, exposure to a non-genotoxic concentration of BNIPSpd, BNIPSpm (0.1 μM for 4 h) or BNIPOSpm (0.1 μM for 12 h) induced a significant decrease in repair of oxidative DNA damage induced by hydrogen peroxide. In conclusion, BNIPP exposure in Caco-2 cells is associated with significant induction of DNA damage and inhibition of DNA repair at non-genotoxic concentrations. The latter is a novel consequence of BNIPP–cell interactions which adds to the spectrum of therapeutically relevant activities that may be exploited for the design and development of naphthalimide-based therapeutics.  相似文献   

19.
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure–effect relationships.  相似文献   

20.
N-cadherin, a cell adhesion molecule normally found in neural cell tissue, has been found recently to be expressed on the surface of malignant T-cells. The function of N-cadherin on these cells remains unclear. Heterotypic assays between Molt-3 T lymphoblastic leukemia cells and Caco-2 epithelial monolayers were examined under different conditions to assess the functional role of N-cadherin. The results indicate that adherence of Molt-3 cells to Caco-2 monolayers was reduced significantly following pretreatment of Molt-3 cells with 100 M of an N-cadherin-derived antagonist decapeptide. In contrast, pretreatment of Molt-3 cells with an anti-N-cadherin antibody raised against the first 20 amino acids of N-cadherin sequence led to a surprisingly marked enhancement of Molt-3 cell adherence to Caco-2 monolayers. In addition, the presence of anti-N-cadherin antibody neutralized the inhibitory effect of anti-ICAM-1 on Molt-3 adhesion to Caco-2 monolayers. This novel finding demonstrates that external stimulus through the N-cadherin amino terminus can modulate adhesion of malignant T-cells to epithelia and may promote their ability to invade or metastasize to inflammatory sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号