首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The pyrrolidine side chain makes proline play a unique role in protein structure and function. The Cγ ring pucker preference and the cis trans peptidyl bond ratio can be mediated via stereoelectronic effects. Here we used a compact triple‐stranded antiparallel β‐sheet protein, the human Pin1 WW domain, to study the consequences of implanting a preorganized Cγ ring pucker on protein structure and function. The conserved Pro37 is a key residue involved in one hydrophobic core, plays an important role in the WW domain, and adopts a Cγendo ring pucker in the native structure. Pro37 was replaced with Cγexo biased pucker derivatives: (2S,4R)‐4‐hydroxyproline (4R‐Hyp), (2S,4R)‐4‐fluoroproline (4R‐Flp), (2S,4R)‐4‐methoxyproline (4R‐Mop), and Cγendo biased pucker derivatives: (2S,4S)‐4‐hydroxyproline (4S‐hyp), (2S,4S)‐4‐fluoroproline (4S‐flp), (2S,4S)‐4‐methoxyproline (4S‐mop) to examine how a preorganized pucker affects the folding stability and ligand‐binding affinity. Circular dichroism measurements indicate that among the variants, only the one with 4S‐flp substitution (P37flp) is more stable than the wild type, suggesting that the stabilization effects originated from preorganization of the backbone conformation and the hydrophobicity of C? F group. Analysis of ligand‐binding affinity using isothermal titration calorimetry revealed that only P37flp has a stronger ligand affinity than the wild type, showing that 4S‐flp can stabilize the WW domain and increase its ligand affinity. Together we have used 4‐substituted proline derivatives and the WW domain to demonstrate that proline ring puckering can be a key factor in determining the folding stability of a protein but the choice of the derivative groups is also critical. Proteins 2014; 82:67–76. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
The biology of the helminth parasite Schistosoma mansoni is closely integrated with that of its mammalian host. SmRK1, a divergent type I transforming growth factor-beta (TGF-beta) receptor of unknown ligand specificity, was previously identified as a candidate for a receptor that allows schistosomes to respond to host-derived growth factors. The TGF-beta family includes activin, bone morphogenetic proteins (BMPs), and TGF-beta, all of which can play crucial roles in metazoan development. The downstream signaling protein of receptors that respond to TGF-beta and activin is Smad2, whereas the receptors that respond to BMPs signal via Smad1. When a constitutively active mutant of SmRK1 was overexpressed with either schistosome Smad1 (SmSmad1) or SmSmad2, a receptor-dependent modulation of SmSmad phosphorylation and luciferase reporter activity occurred only with SmSmad2. To evaluate potential ligand activators of SmRK1, a chimeric receptor containing the extracellular domain of SmRK1 joined to the intracellular domain of the human type I TGF-beta receptor was used. The chimeric receptor bound radiolabeled TGF-beta and could activate a luciferase reporter gene in response to both TGF-beta 1 and TGF-beta 3 but not BMP7. Confirmatory results were obtained using full-length SmRK1. These experiments implicate TGF-beta as a ligand for SmRK1 and as a potential host-derived regulator of parasite growth and development.  相似文献   

10.
The RFX DNA binding domain (DBD) is a novel highly conserved motif belonging to a large number of dimeric DNA binding proteins which have diverse regulatory functions in eukaryotic organisms, ranging from yeasts to human. To characterize this novel motif, solid phase synthesis of a 76mer polypeptide corresponding to the DBD of human hRFX1 (hRFX1/DBD), a prototypical member of the RFX family, has been optimized to yield large quantities (approximately 90 mg) of pure compound. Preliminary two-dimensional1H NMR experiments suggested the presence of helical regions in this sequence in agreement with previously reported secondary structure predictions. In gel mobility shift assays, this synthetic peptide was shown to bind in a cooperative manner the 23mer duplex oligodeoxynucleotide corresponding to the binding site of hRFX1, with a 2:1 stoichoimetry due to an inverse repeat present in the 23mer. The stoichiometry of this complex was reduced to 1:1 by decreasing the length of the DNA sequence to a 13mer oligonucleotide containing a single half-site. Surface plasmon resonance measurements were achieved using this 5'-biotylinated 13mer oligonucleotide immobilized on an avidin-coated sensor chip. Using this method an association constant (K a = 4 x 10(5)/M/s), a dissociation constant (K d = 6 x 10(-2)/s) and an equilibrium dissociation constant (K D = 153 nM) were determined for binding of hRFX1/DBD to the double-stranded 13mer oligonucleotide. In the presence of hRFX1/DBD the melting temperature of the 13mer DNA was increased by 16 degreesC, illustrating stabilization of the double-stranded conformation induced by the peptide.  相似文献   

11.
12.
13.
ATTS, a new and conserved DNA binding domain.   总被引:9,自引:1,他引:8       下载免费PDF全文
  相似文献   

14.
A Saccharomyces cerevisiae lambda gt11 library was screened with antiphosphotyrosine antibodies in an attempt to identify a gene encoding a tyrosine kinase. A subclone derived from one positive phage was sequenced and found to contain an 821-amino-acid open reading frame that encodes a protein with homology to protein kinases. We tested the activity of the putative kinase by constructing a vector encoding a glutathione-S-transferase fusion protein containing most of the predicted polypeptide. The fusion protein phosphorylated endogenous substrates and enolase primarily on serine and threonine. The gene was designated SPK1 for serine-protein kinase. Expression of the Spk1 fusion protein in bacteria stimulated serine, threonine, and tyrosine phosphorylation of bacterial proteins. These results, combined with the antiphosphotyrosine immunoreactivity induced by the kinase, indicate that Spk1 is capable of phosphorylating tyrosine as well as phosphorylating serine and threonine. In in vitro assays, the fusion protein kinase phosphorylated the synthetic substrate poly(Glu/Tyr) on tyrosine, but the activity was weak compared with serine and threonine phosphorylation of other substrates. To determine if other serine/threonine kinases would phosphorylate poly(Glu/Tyr), we tested calcium/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The two kinases had similar tyrosine-phosphorylating activities. These results establish that the functional difference between serine/threonine- and tyrosine-protein kinases is not absolute and suggest that there may be physiological circumstances in which tyrosine phosphorylation is mediated by serine/threonine kinases.  相似文献   

15.
16.
17.
18.
S6 kinases I and II have been purified previously from Xenopus eggs and shown to be activated by phosphorylation on serine and threonine residues. An S6 kinase clone, closely related to S6 kinase II, was subsequently identified and the protein product was expressed in a baculovirus system. Using this protein, termed "rsk" for Ribosomal Protein S6 Kinase, as a substrate, we have purified to homogeneity from unfertilized Xenopus eggs a 41-kDa serine/threonine kinase termed rsk kinase. Both microtubule-associated protein-2 and myelin basic protein are good substrates for rsk kinase, whereas alpha-casein, histone H1, protamine, and phosvitin are not. rsk kinase is inhibited by low concentrations of heparin as well as by beta-glycerophosphate and calcium. Activation of rsk kinase during Xenopus oocyte maturation is correlated with phosphorylation on threonine and tyrosine residues. However, in vitro, rsk kinase undergoes autophosphorylation on serine, threonine, and tyrosine residues, identifying it as a "dual specificity" enzyme. Purified rsk kinase can be inactivated in vitro by either a 37-kDa T-cell protein-tyrosine phosphatase or the serine/threonine protein phosphatase 2A. Phosphatase-treated S6KII can be reactivated by rsk kinase, and S6 kinase activity in resting oocyte extracts increases significantly when purified rsk kinase is added. The availability of purified rsk kinase will enhance study of the signal transduction pathway(s) regulating phosphorylation of ribosomal protein S6 in Xenopus oocytes.  相似文献   

19.
The p53 protein family is involved in the control of an intricate network of genes implicated in cell cycle, through to germ line integrity and development. Although the role of p53 is well-established, the intrinsic nature of its homologue p73 has yet to be fully elucidated. Here, the biochemical characterization and homology-based modeling of the p73 protein is presented and the implications for its function(s) examined. The DNA binding domains (DBDs) of p53, p63, and p73 bind to the specific target site of a 30-mer gadd45 dsDNA, as tested by EMSA. The monomeric DBDs bind cooperatively forming tetrameric complexes. However, a larger construct consisting of p73 DBD plus TET domain (p73 CT) and the corresponding p53 DBD plus TET domain (p53 CT) bind gadd45 differently than the respective DBDs. Significantly, p73 DBD exhibited enhanced thermodynamic stability relative to the p53 DBD but not compared to p63 DBD as shown by DSC, CD, and equilibrium unfolding. The p73 CT is less stable than p73 DBD. The modeling data show distinct electrostatic surfaces of p73 and p53 dimers when bound to DNA. Specifically, the p73 surface is less complementary for DNA binding, which may account for the differences in affinity and specificity for p53 REs. These stability and DNA binding data for p73 in vitro enhance and complement our understanding of the role of the p73 protein in vivo and could be exploited in designing strategies for cancer therapy in places where p53 is mutated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号