共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The biology of the helminth parasite Schistosoma mansoni is closely integrated with that of its mammalian host. SmRK1, a divergent type I transforming growth factor-beta (TGF-beta) receptor of unknown ligand specificity, was previously identified as a candidate for a receptor that allows schistosomes to respond to host-derived growth factors. The TGF-beta family includes activin, bone morphogenetic proteins (BMPs), and TGF-beta, all of which can play crucial roles in metazoan development. The downstream signaling protein of receptors that respond to TGF-beta and activin is Smad2, whereas the receptors that respond to BMPs signal via Smad1. When a constitutively active mutant of SmRK1 was overexpressed with either schistosome Smad1 (SmSmad1) or SmSmad2, a receptor-dependent modulation of SmSmad phosphorylation and luciferase reporter activity occurred only with SmSmad2. To evaluate potential ligand activators of SmRK1, a chimeric receptor containing the extracellular domain of SmRK1 joined to the intracellular domain of the human type I TGF-beta receptor was used. The chimeric receptor bound radiolabeled TGF-beta and could activate a luciferase reporter gene in response to both TGF-beta 1 and TGF-beta 3 but not BMP7. Confirmatory results were obtained using full-length SmRK1. These experiments implicate TGF-beta as a ligand for SmRK1 and as a potential host-derived regulator of parasite growth and development. 相似文献
9.
DNA binding properties of a chemically synthesized DNA binding domain of hRFX1. 总被引:2,自引:0,他引:2
下载免费PDF全文

F Cornille P Emery W Schüler C Lenoir B Mach B P Roques W Reith 《Nucleic acids research》1998,26(9):2143-2149
The RFX DNA binding domain (DBD) is a novel highly conserved motif belonging to a large number of dimeric DNA binding proteins which have diverse regulatory functions in eukaryotic organisms, ranging from yeasts to human. To characterize this novel motif, solid phase synthesis of a 76mer polypeptide corresponding to the DBD of human hRFX1 (hRFX1/DBD), a prototypical member of the RFX family, has been optimized to yield large quantities (approximately 90 mg) of pure compound. Preliminary two-dimensional1H NMR experiments suggested the presence of helical regions in this sequence in agreement with previously reported secondary structure predictions. In gel mobility shift assays, this synthetic peptide was shown to bind in a cooperative manner the 23mer duplex oligodeoxynucleotide corresponding to the binding site of hRFX1, with a 2:1 stoichoimetry due to an inverse repeat present in the 23mer. The stoichiometry of this complex was reduced to 1:1 by decreasing the length of the DNA sequence to a 13mer oligonucleotide containing a single half-site. Surface plasmon resonance measurements were achieved using this 5'-biotylinated 13mer oligonucleotide immobilized on an avidin-coated sensor chip. Using this method an association constant (K a = 4 x 10(5)/M/s), a dissociation constant (K d = 6 x 10(-2)/s) and an equilibrium dissociation constant (K D = 153 nM) were determined for binding of hRFX1/DBD to the double-stranded 13mer oligonucleotide. In the presence of hRFX1/DBD the melting temperature of the 13mer DNA was increased by 16 degreesC, illustrating stabilization of the double-stranded conformation induced by the peptide. 相似文献
10.
11.
12.
13.
14.
15.
16.
S6 kinases I and II have been purified previously from Xenopus eggs and shown to be activated by phosphorylation on serine and threonine residues. An S6 kinase clone, closely related to S6 kinase II, was subsequently identified and the protein product was expressed in a baculovirus system. Using this protein, termed "rsk" for Ribosomal Protein S6 Kinase, as a substrate, we have purified to homogeneity from unfertilized Xenopus eggs a 41-kDa serine/threonine kinase termed rsk kinase. Both microtubule-associated protein-2 and myelin basic protein are good substrates for rsk kinase, whereas alpha-casein, histone H1, protamine, and phosvitin are not. rsk kinase is inhibited by low concentrations of heparin as well as by beta-glycerophosphate and calcium. Activation of rsk kinase during Xenopus oocyte maturation is correlated with phosphorylation on threonine and tyrosine residues. However, in vitro, rsk kinase undergoes autophosphorylation on serine, threonine, and tyrosine residues, identifying it as a "dual specificity" enzyme. Purified rsk kinase can be inactivated in vitro by either a 37-kDa T-cell protein-tyrosine phosphatase or the serine/threonine protein phosphatase 2A. Phosphatase-treated S6KII can be reactivated by rsk kinase, and S6 kinase activity in resting oocyte extracts increases significantly when purified rsk kinase is added. The availability of purified rsk kinase will enhance study of the signal transduction pathway(s) regulating phosphorylation of ribosomal protein S6 in Xenopus oocytes. 相似文献
17.
The p73 DNA binding domain displays enhanced stability relative to its homologue, the tumor suppressor p53, and exhibits cooperative DNA binding 总被引:1,自引:0,他引:1
The p53 protein family is involved in the control of an intricate network of genes implicated in cell cycle, through to germ line integrity and development. Although the role of p53 is well-established, the intrinsic nature of its homologue p73 has yet to be fully elucidated. Here, the biochemical characterization and homology-based modeling of the p73 protein is presented and the implications for its function(s) examined. The DNA binding domains (DBDs) of p53, p63, and p73 bind to the specific target site of a 30-mer gadd45 dsDNA, as tested by EMSA. The monomeric DBDs bind cooperatively forming tetrameric complexes. However, a larger construct consisting of p73 DBD plus TET domain (p73 CT) and the corresponding p53 DBD plus TET domain (p53 CT) bind gadd45 differently than the respective DBDs. Significantly, p73 DBD exhibited enhanced thermodynamic stability relative to the p53 DBD but not compared to p63 DBD as shown by DSC, CD, and equilibrium unfolding. The p73 CT is less stable than p73 DBD. The modeling data show distinct electrostatic surfaces of p73 and p53 dimers when bound to DNA. Specifically, the p73 surface is less complementary for DNA binding, which may account for the differences in affinity and specificity for p53 REs. These stability and DNA binding data for p73 in vitro enhance and complement our understanding of the role of the p73 protein in vivo and could be exploited in designing strategies for cancer therapy in places where p53 is mutated. 相似文献
18.
Hein J Boichuk S Wu J Cheng Y Freire R Jat PS Roberts TM Gjoerup OV 《Journal of virology》2009,83(1):117-127
Simian virus 40 (SV40) large T antigen (LT) is a multifunctional protein that is important for viral replication and oncogenic transformation. Previously, infection of monkey or human cells with SV40 was shown to lead to the induction of DNA damage response signaling, which is required for efficient viral replication. However, it was not clear if LT is sufficient to induce the damage response and, if so, what the genetic requirements and functional consequences might be. Here, we show that the expression of LT alone, without a replication origin, can induce key DNA damage response markers including the accumulation of γ-H2AX and 53BP1 in nuclear foci. Other DNA damage-signaling components downstream of ATM/ATR kinases were induced, including chk1 and chk2. LT also bound the Claspin mediator protein, which normally facilitates the ATR activation of chk1 and monitors cellular replication origins. Stimulation of the damage response by LT depends mainly on binding to Bub1 rather than to the retinoblastoma protein. LT has long been known to stabilize p53 despite functionally inactivating it. We show that the activation of a DNA damage response by LT via Bub1 appears to play a major role in p53 stabilization by promoting the phosphorylation of p53 at Ser15. Accompanying the DNA damage response, LT induces tetraploidy, which is also dependent on Bub1 binding. Taken together, our data suggest that LT, via Bub1 binding, breaches genome integrity mechanisms, leading to DNA damage responses, p53 stabilization, and tetraploidy. 相似文献
19.