首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.  相似文献   

2.
Horseradish peroxidase-catalysed oxidation of thiocyanate by hydrogen peroxide has been studied by 15N-NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pH values. The extent of the oxidation and the identity of the oxidized product of the thiocyanate has been investigated in the SCN-/H2O2/HRP system and compared with the corresponding data on the SCN-/H2O2/LPO system. The NMR studies show that (SCN)2 is the oxidation product of thiocyanate in the SCN-/H2O2/HRP system, and its formation is maximum at pH less than or equal to 4 and that the oxidation does not take place at pH greater than or equal to 6. Since thiocyanate does not bind to HRP at pH greater than or equal to 6 (Modi et al. (1989) J. Biol. Chem. 264, 19677-19684), the binding of thiocyanate to HRP is considered to be a prerequisite for the oxidation of thiocyanate. It is further observed that at [H2O2]/[SCN-] = 4, (SCN)2 decomposes very slowly back to thiocyanate. The oxidation product of thiocyanate in the SCN-/H2O2/LPO system has been shown to be HOSCN/OSCN- which shows maximum inhibition of uptake by Streptococcus cremoris 972 bacteria when hydrogen peroxide and thiocyanate are present in equimolar amounts (Modi et al. (1991) Biochemistry 30, 118-124). However, in case of HRP no inhibition of oxygen uptake by this bacteria was observed. Since thiocyanate binds to LPO at the distal histidine while to HRP near 1- and 8-CH3 heme groups, the role of distal histidine in the activity of SCN-/H2O2/(LPO, HRP) systems is indicated.  相似文献   

3.
Oxidation of chloride and thiocyanate by isolated leukocytes   总被引:8,自引:0,他引:8  
Peroxidase-catalyzed oxidation of chloride (Cl-) and thiocyanate (SCN-) was studied using neutrophils from human blood and eosinophils and macrophages from rat peritoneal exudates. The aims were to determine whether Cl- or SCN- is preferentially oxidized and whether leukocytes oxidize SCN- to the antimicrobial oxidizing agent hypothiocyanite (OSCN-). Stimulated neutrophils produced H2O2 and secreted myeloperoxidase. Under conditions similar to those in plasma (0.14 M Cl-, 0.02-0.12 mM SCN-), myeloperoxidase catalyzed the oxidation of Cl- to hypochlorous acid (HOCl), which reacted with ammonia and amines to yield chloramines. HOCl and chloramines reacted with SCN- to yield products without oxidizing activity, so that high SCN- blocked accumulation of chloramines in the extracellular medium. Under conditions similar to those in saliva and the surface of the oral mucosa (20 mM Cl-, 0.1-3 mM SCN-), myeloperoxidase catalyzed the oxidation of SCN- to OSCN-, which accumulated in the medium to concentrations of up to 40-70 microM. Sulfonamide compounds increased the yield of stable oxidants to 0.2-0.3 mM by reacting with OSCN- to yield derivatives analogous to chloramines. Stimulated eosinophils produced H2O2 and secreted eosinophil peroxidase, which catalyzed the oxidation of SCN- to OSCN- regardless of Cl- concentration. Stimulated macrophages produced H2O2 but had low peroxidase activity. OSCN- was produced when SCN- was 0.1 mM or higher and myeloperoxidase, eosinophil peroxidase, or lactoperoxidase was added. The results indicate that SCN- rather than Cl- may be the physiologic substrate (electron donor) for eosinophil peroxidase and that OSCN- may contribute to leukocyte antimicrobial activity under conditions that favor oxidation of SCN- rather than Cl-.  相似文献   

4.
The peroxidase-catalyzed oxidation of SCN- by H2O2 is an important in vivo reaction because it limits the accumulation of toxic H2O2 and provides significant concentrations of the antimicrobial agents, HOSCN and OSCN-. Data presented in this report suggest that the reaction: (Formula: see text) is in a state of dynamic equilibrium in vivo. Since OSCN- can form the weak acid HOSCN (pKa = 5.3), the equilibrium constant expression (Kox) for thiocyanate peroxidation is dependent on the concentration of hydrogen ions as well as the concentrations of H2O2, SCN-, HOSCN, OSCN- and water, and on the HOSCN ionization constant, Ka: (Formula: see text). The concentration of water is assumed to be constant and unaffected by the other components and is omitted from the Kox equation. The value of Kox was estimated from in vitro data to be 3.7 X 10(3) M-1 (S.D. = 0.8 X 10(3) M-1, n = 8). Using this value for Kox and observations of salivary concentrations of SCN- and HOSCN + OSCN- from several previous reports, the equilibrium concentrations of H2O2 in whole saliva were calculated to range from 8 to 13 microM. This range is consistent with reported estimates of 10 microM as the hydrogen peroxide tolerance limit for human cells.  相似文献   

5.
Peroxidation of SCN- to OSCN-, catalysed by myeloperoxidase and lactoperoxidase, was studied. The rate of this reaction showed sharp optima between pH 5 and 7.5, the position of which is determined by the concentrations of both SCN- and H2O2. At low pH values, both SCN- and H+ inhibited myeloperoxidase and lactoperoxidase competitively with respect to H2O2. The inhibition constants of SCN- for myeloperoxidase and lactoperoxidase (2 and 6 mM, respectively) are independent of pH. For these enzymes a Ki for H+ of 1 microM was found that corresponded to an ionisable group on the enzymes (pKa = 6) which controls the enzymic activity. A kinetic expression is proposed that explains most of the data. The physiological consequences of the corresponding mechanism are discussed.  相似文献   

6.
Iron can be a detrimental catalyst in biological free radical oxidations. Because of the high physiological ratio of [O2]/[H2O2] (> or = 10(3)), we hypothesize that the Fenton reaction with pre-existing H2O2 is only a minor initiator of free radical oxidations and that the major initiators of biological free radical oxidations are the oxidizing species formed by the reaction of Fe2+ with dioxygen. We have employed electron paramagnetic resonance spin trapping to examine this hypothesis. Free radical oxidation of: 1) chemical (ethanol, dimethyl sulfoxide); 2) biochemical (glucose, glyceraldehyde); and 3) cellular (L1210 murine leukemia cells) targets were examined when subjected to an aerobic Fenton (Fe2+ + H2O2 + O2) or an aerobic (Fe2+ + O2) system. As anticipated, the Fenton reaction initiates radical formation in all the above targets. Without pre-existing H2O2, however, Fe2+ and O2 also induce substantial target radical formation. Under various experimental ratios of [O2]/[H2O2] (1-100 with [O2] approximately 250 microM), we compared the radical yield from the Fenton reaction vs. the radical yield from Fe2+ + O2 reactions. When [O2]/[H2O2] < 10, the Fenton reaction dominates target molecule radical formation; however, production of target-molecule radicals via the Fenton reaction is minor when [O2]/[H2O2] > or = 100. Interestingly, when L1210 cells are the oxidation targets, Fe2+ + O2 is observed to be responsible for formation of nearly all of the cell-derived radicals detected, no matter the ratio of [O2]/[H2O2]. Our data demonstrate that when [O2]/[H2O2] > or = 100, Fe2+ + O2 chemistry is an important route to initiation of detrimental biological free radical oxidations.  相似文献   

7.
The reaction of nitrite (NO2-) with horseradish peroxidase and lactoperoxidase was studied. Sequential mixing stopped-flow measurements gave the following values for the rate constants of the reaction of nitrite with compounds II (oxoferryl heme intermediates) of horseradish peroxidase and lactoperoxidase at pH 7.0, 13.3 +/- 0.07 mol(-1) dm3 s(-1) and 3.5 +/- 0.05 x 10(4) mol(-1) dm3 s(-1), respectively. Nitrite, at neutral pH, influenced measurements of activity of lactoperoxidase with typical substrates like 2,2'-azino-bis[ethyl-benzothiazoline-(6)-sulphonic acid] (ABTS), guaiacol or thiocyanate (SCN-). The rate of ABTS and guaiacol oxidation increased linearly with nitrite concentration up to 2.5-5 mmol dm(-3). On the other hand, two-electron SCN- oxidation was inhibited in the presence of nitrite. Thus, nitrite competed with the investigated substrates of lactoperoxidase. The intermediate, most probably nitrogen dioxide (*NO2), reacted more rapidly with ABTS or guaiacol than did lactoperoxidase compound II. It did not, however, effectively oxidize SCN- to OSCN-. NO2- did not influence the activity measurements of horseradish peroxidase by ABTS or guaiacol method.  相似文献   

8.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The stoichiometry of oxygen consumption during tyrosinase-catalyzed oxidation of an o-diphenol (4-tert-butylcatechol, TBC) and a monophenol (4-tert-butylphenol, TBP) has been determined. At high [substrate]/[enzyme] ratios, in the case of o-diphenols, the stoichiometry of the enzyme-catalyzed reaction was always 1 O(2)/2 o-diphenols, although if the o-quinone product was unstable, the apparent stoichiometry could tend to 1 O(2)/1 o-diphenol due to regeneration of an o-diphenol in a side reaction. In the case of monophenols, the stoichiometry could be 1 O(2)/1 monophenol or 1.5 O(2)/1 monophenol depending if the o-quinone product was stable or unstable, respectively. However, at low [substrate]/[enzyme] ratios, the oxygen/substrate stoichiometry could, even in the case where stable products are formed, be lower than 1 O(2)/2 substrates for o-diphenols or higher than 1 O(2)/1 substrate for monophenols. These data supported the mechanism proposed by Rodríguez-López et al. [J. Biol. Chem. 267 (1992) 3801-3810], in which, during hydroxylation of monophenols, tyrosinase first transformed monophenol to o-diphenol and then either catalyzed a further oxidation to form o-quinone or released it into the reaction medium. In this second case, subsequent oxidation of the o-diphenol resulted in additional oxygen consumption.  相似文献   

10.
Rates of yeast cytochrome c peroxidase (ferrocytochrome c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) catalyzed oxidation of bis(tripyridine)cobalt(II) ion, penta(amine)pyridineruthenium(II) ion and ferrocyanide ion by hydrogen peroxide have been found to obey the empirical equation: (formula; see text) in the pH range 5 to 8, and at saturating H2O2 concentrations. [( S] and [CcP] are the concentrations of the reductant and the enzyme, respectively.) Values of k2 were found to be independent of the reductant. The term k0[S] is only significant with the cobalt and ruthenium complexes at high pH. The mechanism proposed to account for this rate equation differs significantly from previous mechanistic proposals. In particular, the rate data require the assignment of the rate-limiting step at high substrate concentrations to a slow electron-transfer within the enzyme, and not, as previously suggested, to saturation of substrate binding to the enzyme. Also, the term k0[S] implies that the reactive substrates, including the natural substrate (yeast cytochrome c), react with the hydrogen peroxide-heme complex and not with the radical species formed by reaction with hydrogen peroxide in the absence of reductants.  相似文献   

11.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

12.
The lactoperoxidase-catalyzed oxidation of thiocyanate (SCN-) was studied in the pH range 3-8. The ultraviolet spectra of the oxidation products, the hypothiocyanite ion, OSCN- (at pH 8) and hypothiocyanous acid, HOSCN (at pH 3), were recorded. The absorbance maxima for OSCN- and HOSCN were observed at 220 and 240 nm, respectively. The extinction coefficients for OSCN- and HOSCN were determined to be 3870 (at 220 nM) and 95 M-1 X cm-1 (at 240 nM), respectively. Pure solutions of OSCN- (at pH 8) and HOSCN (at pH 3) were stable, but the mixtures of these two species at intermediate pH values were unstable. The decomposition could be divided into two periods, an initial period of rapid increase in oxidizing equivalents and a second period of decomposition. Decomposition during the second period followed first-order kinetics, and the pH-dependence of the apparent first-order rate constant was consistent with a decomposition mechanism which involved HOSCN. The first-order rate constant for this step was estimated to be 6 X 10(-3) s-1 at 37 degrees C.  相似文献   

13.
Thiobacillus ferro-oxidans is capable of using the oxidation of Fe2+ by O2 at pH 2.0 as the sole source of energy for growth and CO2 fixation. The bacterium maintains an intracellular pH of 6.5 over a range of external pH from 1.0 to 8.0, as measured by [14C]acetate and [3H]methylamine distribution. The membrane potential was estimated by the distribution of the lipid-soluble cation dibenzyldimethylammonium and the anion SCN-. At pH 2.0 (the pH of growth) during Fe2+ oxidation the transmembrane pH gradient is 4.5 units with an opposing membrane potential of -10mV, giving a proton electrochemical gradient of +256mV. This gradient is actively maintained.  相似文献   

14.
Components of the lactoperoxidase system were measured during incubation in Isosensitest broth, with enzymatic (glucose oxidase, GO) or chemical (sodium carbonate peroxyhydrate, SCP) means to generate H2O2. When low levels of thiocyanate (SCN-) were used in the GO system, H2O2 was detected and lactoperoxidase (LP) was inactivated when SCN- was depleted. With 10-fold higher SCN-, LP remained active and H2O2 was not detectable. The oxidation product of the LP reaction, most likely hypothiocyanite, was present in low concentrations. When SCP was used for the immediate generation of H2O2 in a system employing low SCN-, half the LP activity was lost within minutes but thereafter it remained stable. Low concentrations of oxidation product were measured and H2O2 was not detected during the course of the experiment. At high SCN- levels, relatively high concentrations of oxidation product were produced immediately, with H2O2 undetectable. The results suggest that the final product of the LP reaction depends on the method of H2O2 generation and the relative proportions of the substrates. Antibacterial activity of the two LPS was tested against an enterotoxigenic strain of Escherichia coli. Both systems showed bactericidal activity within 4 h incubation at 37 degrees C.  相似文献   

15.
Spectral and catalytic parameters of peroxidase solubilized in the aerosol OT-water-octane system have been studied. The spectrum of peroxidase solubilized in octane with AOT reversed micelles, a degree of surfactant hydration being above 12, is actually identical to that of the enzyme aqueous solution. On the other hand, significant spectral changes have been detected when transferring the enzyme from water to the reversed micelle medium at low degrees of surfactant hydration, precisely [H2O]/[AOT] less than 12. The reversed micelle-entrapped peroxidase catalyses the oxidation of pyrogallol with hydrogen peroxide much more actively (at [H2O]/[surfactant] approximately 13) than that in aqueous solution. The entrapment of peroxidase into surfactant reversed micelles increases precisely the catalytic constant of the reaction, i.e. the virtual reactivity of the enzyme increases ten and hundred times depending on degrees of surfactant hydration and concentration. The systems of reversed micelles may be considered as models of biomembranes. Our findings hence show that enzymes in vivo can be much more catalytically active then it appears possible to reveal in conventional experiments in vitro in aqueous solutions.  相似文献   

16.
Generation of superoxide anion and hydrogen peroxide during enzymatic oxidation of 3-(3,4-dihydroxyphenyl)-DL-alanine (DOPA) has been studied. The ability of DOPA to react with O2*- has been revealed. EPR spectrum of DOPA-semiquinone formed upon oxidation of DOPA by O2*- was observed using spin stabilization technique of ortho-semiquinones by Zn2+ ions. Simultaneously, the oxidation of DOPA by O2*- was found to produce hydrogen peroxide (H2O2). The analysis of H2O2 formation upon oxidation of DOPA by O2*- using 1-hydroxy-3-carboxy-pyrrolidine (CP-H), and SOD as competitive reagents for superoxide provides consistent values of the rate constant for the reaction between DOPA and O2*- being equal to (3.4+/-0.6)x10(5) M(-1) s(-1).The formation of H2O2 during enzymatic oxidation of DOPA by phenoloxidase (PO) has been shown. The H2O2 production was found to be SOD-sensitive. The inhibition of H2O2 production by SOD was about 25% indicating that H2O2 is produced both from superoxide anion and via two-electron reduction of oxygen at the enzyme. The attempts to detect superoxide production during enzymatic oxidation of DOPA using a number of spin traps failed apparently due to high value of the rate constant for DOPA interaction with O2*-.  相似文献   

17.
Ethylene (C2H4) inhibited H2 evolution by the Mo-containing nitrogenase of Klebsiella pneumoniae. The extent of inhibition depended on the electron flux determined by the ratio of Fe protein (Kp2) to MoFe protein (Kp1) with KiC2H4 = 409 kPa ([Kp2]/[Kp1] = 22:1) and KC2H4i = 88 kPa ([Kp1]/[Kp2] = 21:1) at 23 degrees C at pH 7.4. At [Kp2]/[Kp1] = 1:1, inhibition was minimal with C2H4 (101 kPa). Extrapolation of data obtained when C2H4 was varied from 60 to 290 kPa indicates that at infinite pressure of C2H4 total inhibition of H2 evolution should occur. C2H4 inhibited concomitant S2O4(2-) oxidation to the same extent that it inhibited H2 evolution. Although other inhibitors of total electron flux such as CN- and CH3NC uncouple MgATP hydrolysis from electron transfer, C2H4 did not affect the ATP/2e ratio. Inhibition of H2 evolution by C2H4 was not relieved by CO. C2H4 was reduced to C2H6 at [Kp2]/[Kp1] ratios greater than or equal to 5:1 in a reaction that accounted for no more than 1% of the total electron flux. These data are discussed in terms of the chemistry of alkyne and alkene reduction on transition-metal centres.  相似文献   

18.
The aim of our study was to determine, as a function of [Cu(2+)]/[LDL] ratios (0.5 and 0.05) and of oxidation phases, the extent of LDL oxidation by assessing the lipid and apo B oxidation products. The main results showed that: (i) kinetics of conjugated diene formation presented four phases for Cu(2+)/LDL ratio of 0.5 and two phases for [Cu(2+)]/[LDL] ratio of 0.05; (ii) oxidation product formation (cholesteryl ester and phosphatidylcholine hydroperoxides, apo B carbonyl groups) occurred early in the presence of endogenous antioxidants, under both copper oxidation conditions; (iii) apo B carbonylated fragments appeared when antioxidants were totally consumed at [Cu(2+)]/[LDL] ratio of 0.5; and (iv) antioxidant concentrations were stable, oxysterol formation was negligible, and no carbonylated fragment was detected at [Cu(2+)]/[LDL] ratio of 0.05. Depending on the copper/LDL ratio, oxidized LDL differ greatly in the nature of lipid peroxidation product and the degree of apo B fragmentation.  相似文献   

19.
1,3-Butadiene was oxidized by human myeloperoxidase in the absence of KCl to yield butadiene monoxide (BM) and crotonaldehyde (CA), but at KCl concentrations higher than 50 mM, 1-chloro-2-hydroxy-3-butene (CHB) was the major metabolite detected; metabolite formation was dependent on incubation time, pH, KCl, 1,3-butadiene, and H2O2 concentrations. The data are best explained by 1,3-butadiene being oxidized by myeloperoxidase by two different mechanisms. First, oxygen transfer from the hemoprotein would occur to either C-1 or C-4 of 1,3-butadiene to form an intermediate which may cyclize to form BM or undergo a hydrogen shift to form 3-butenal, an unstable precursor of CA. Further evidence for this mechanism was provided by the inability to detect methyl vinyl ketone, a possible product of an oxygen transfer reaction to C-2 or C-3 of 1,3-butadiene, and by the finding that CA was not simply a decomposition product of BM under assay conditions. In the second mechanism, however, chloride ion is oxidized by myeloperoxidase to HOCl which reacts with 1,3-butadiene to yield CHB. Further evidence for this mechanism was provided by the finding that CHB was readily formed when 1,3-butadiene was added to the filtrate of a myeloperoxidase/H2O2/KCl incubation and when 1,3-butadiene was allowed to react with authentic HOCl. In addition, CHB was not detected when BM or CA was incubated with myeloperoxidase, H2O2, and KCl for up to 60 min, or when 1,3-butadiene and KCl were incubated with chloroperoxidase and H2O2 or with mouse liver microsomes and NADPH, enzyme systems which catalyze 1,3-butadiene oxidation to BM and CA, but unlike myeloperoxidase, do not catalyze chloride ion oxidation to HOCl. These results provide clear evidence for novel olefinic oxidation reactions by myeloperoxidase.  相似文献   

20.
The protection provided by poly(ethyleneimine) (PEI) to muscle lactate dehydrogenase (LDH) in metal-catalyzed oxidation (MCO) systems (CuSO(4) or FeCl(2) combined with H(2)O(2)) was studied, and comparisons were made with the chelators EDTA and desferal, respectively. The analytical chelating capacity of PEI was estimated to be around 1 mol Cu(2+)/10 mol ethyleneimine for all molecular weights of the polymer. The effect of [PEI monomer]/[metal ion] molar ratio on the oxidatively induced aggregation of LDH exhibited a similar trend as that of the other chelators; aggregation was enhanced at lower ratios and subsequently decreased until it was undetectable with increasing ratio. In contrast, the LDH activity showed a monotonic increase with increasing concentrations of the chelator. Total protection to the enzyme by PEI was provided at concentrations lower than that needed for full chelation of the copper ions, i.e. at [PEI monomer]/[Cu(2+)] ratio above 9 in case of PEI 2000, and above 7 for PEI 25000 and 2.6 x 10(6), respectively. The polymer also provided protection against oxidation in an iron-based MCO system. Hydroxyl radical formation during the MCO reaction was inhibited in the presence of PEI. The polymer of higher molecular weights also exhibited a stronger free radical scavenging effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号