首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract: In rat pinealocytes, protein kinase C (PKC) is involved in the α1-adrenergic-mediated potentiation of β-adrenergic-stimulated cyclic nucleotide responses; however, the specific PKC isozyme(s) involved in the potentiation mechanism remain unknown. In the present study, we compared the effects of two PKC inhibitors, calphostin C, a specific inhibitor of PKC, and Gö6976, a selective inhibitor of PKCα and PKCβ1, on the adrenergic-stimulated cyclic nucleotide accumulation in rat pinealocytes. Surprisingly, Gö6976 was found to have an enhancing effect on basal cyclic GMP and isoproterenol-stimulated cyclic AMP and cyclic GMP accumulation, an effect not shared by calphostin C. Gö6976 also increased the norepinephrine- and ionomycin-induced potentiation of isoproterenol-stimulated cyclic AMP and cyclic GMP accumulation, whereas the effect of calphostin C was inhibitory. The enhancing effect of Gö6976 was abolished in the presence of isobutylmethylxanthine or zaprinast, but not rolipram, suggesting that this effect of Gö6976 may be mediated through type V or the retinal type of phosphodiesterase. Based on these observations, we propose that some of the PKC isozyme(s) inhibited by calphostin C are involved in the potentiation of β-adrenergic-stimulated cyclic nucleotide responses and that they act by enhancing synthesis. However, PKC isozymes inhibited by Gö6976 appear to be basally active and tonically inhibit cyclic nucleotide accumulation through their stimulatory action on phosphodiesterase.  相似文献   

2.
In this study, the role of elevation of intracellular Ca2+ and activation of protein kinase C on adrenergic-stimulated cyclic nucleotide accumulation and melatonin synthesis in rat pinealocytes was investigated. It was found that whereas KCl, ionomycin, and ouabain, three Ca(2+)-elevating agents, had a potentiating effect on adrenergic-stimulated cyclic AMP response, their effects on melatonin synthesis were inhibitory. Similar inhibition was also observed when dibutyryl cyclic AMP was used to stimulate melatonin synthesis. By determining intracellular Ca2+ directly, it was found that the enhancing effects of these agents on the cyclic AMP response but not their inhibitory effects on melatonin synthesis paralleled their abilities to elevate intracellular Ca2+. In comparison, activation of protein kinase C significantly enhanced the adrenergic-stimulated cyclic AMP response and, to a lesser degree, the adrenergic-stimulated N-acetyltransferase and melatonin levels. These results indicate that (i) Ca(2+)-elevating agents have opposite effects on adrenergic-stimulated cyclic AMP and melatonin production; (ii) a post cyclic AMP event of importance to melatonin synthesis is inhibited by these agents; and (iii) the mechanism of inhibition may not be directly related to their effect on intracellular Ca2+.  相似文献   

3.
In rat pinealocytes, alpha 1-adrenergic activation, which leads to cytoplasmic alkalinization, also potentiates the beta-adrenergic stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) responses. Both elevation of intracellular calcium ([Ca2+]i) and activation of protein kinase C are involved in the potentiation mechanism. Recently, intracellular pH has also been found to modulate the adrenergic-stimulated cyclic nucleotide responses, suggesting intracellular pH may also affect the potentiation mechanism. This possibility was examined in the present study. Cytoplasmic alkalinization by ammonium chloride had an enhancing effect on the isoproterenol and ionomycin-stimulated cAMP and cGMP accumulation. In comparison, cytoplasmic acidification by sodium propionate reduced the isoproterenol and ionomycin-stimulated cAMP and cGMP responses. Direct measurement of [Ca2+]i indicated that neither ammonium chloride nor sodium propionate had an effect on the ionomycin-stimulated elevation of [Ca2+]i, suggesting their effects on cyclic nucleotide responses may be independent of [Ca2+]i. In cells stimulated by isoproterenol and an activator of protein kinase C, ammonium chloride had an enhancing effect on both cAMP and cGMP responses, whereas sodium propionate had no effect. Taken together, these results suggest that a site distal to elevation of [Ca2+]i and activation of protein kinase C, of importance to the potentiation mechanism, is modulated by intracellular pH.  相似文献   

4.
This study was undertaken to examine the role of phospholipase A2 and protein kinase C in the potentiation of beta-adrenoceptor-mediated cyclic AMP formation by alpha-adrenoceptors in rat cerebral cortical slices. Inhibition of arachidonic acid metabolism by a range of cyclooxygenase and lipoxygenase inhibitors had no effect on the potentiation of isoprenaline-stimulated cyclic AMP. Conversely, stimulation of leukotriene formation had no effect on the response to isoprenaline. The phospholipase A2 activator, melittin, stimulated cyclic AMP and potentiated the effect of isoprenaline, but these responses were not influenced by cyclooxygenase or lipoxygenase inhibitors. Indomethacin was also ineffective against the potentiation of vasoactive intestinal peptide-stimulated cyclic AMP by noradrenaline. Phorbol ester potentiated the cyclic AMP response to isoprenaline, and this potentiation was antagonized by three different putative protein kinase C inhibitors. However, the same inhibitors did not affect the alpha-adrenoceptor-stimulated enhancement of the response to isoprenaline. We have found no evidence, therefore, to support the suggestion that arachidonic acid and its metabolites and/or protein kinase C mediate the alpha-adrenoceptor modulation of beta-adrenoceptor function.  相似文献   

5.
The level of cyclic AMP in primary cultures of bovine adrenal medulla cells is elevated by prostaglandin E1. Angiotensin II is commonly reported to act on receptors linked to phosphoinositide metabolism or to inhibition of adenylate cyclase. We have investigated the effect of angiotensin II on prostaglandin E1-stimulated cyclic AMP levels in these primary cultures. Rather than reducing cyclic AMP levels, we have found that angiotensin II powerfully potentiates prostaglandin E1-stimulated cyclic AMP accumulation in intact cells, both in the presence and absence of phosphodiesterase inhibitors. The 50% maximal response was similar to that for stimulation of phosphoinositide breakdown by angiotensin II in these cultures. The potentiation of stimulated cyclic AMP levels was seen, although to a smaller maximum, with the protein kinase C (Ca2+/phospholipid-dependent enzyme) activating phorbol ester tetradecanoyl phorbolacetate and with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol; pretreatment (24 h) with active phorbol ester, which would be expected to diminish protein kinase C levels, attenuated the angiotensin II potentiation of cyclic AMP. Using digitonin-permeabilized cells we showed that adenylate cyclase activity was stimulated by prostaglandin E1 with the same dose-response relationship as was cyclic AMP accumulation in intact cells, but the permeabilized cells showed no response to angiotensin II. The results are discussed with respect to the hypothesis that the angiotensin II influence on cyclic AMP levels is mediated, in part, by diacylglycerol stimulation of protein kinase C.  相似文献   

6.
The phosphodiesterase activity in the HT4.7 neural cell line was pharmacologically characterized, and phosphodiesterase isozyme 4 (PDE4) was found to be the predominant isozyme. The Km for cAMP was 1-2 microM, indicative of a "low Km" phosphodiesterase, and the activity was inhibited by PDE4-selective inhibitors rolipram and Ro20-1724, but not PDE3- or PDE2-selective inhibitors. Calcium, calmodulin, and cGMP, regulators of PDE1, PDE2, and PDE3, had no effect on cAMP hydrolysis. The protein tyrosine kinase inhibitor, genistein, inhibited HT4.7 cAMP phosphodiesterase activity by 85-95% with an IC50 of 4 microM; whereas daidzein, an inactive structural analog of genistein, had little effect on phosphodiesterase activity. This is a common pharmacological criterion used to implicate the regulation by a tyrosine kinase. However, genistein still inhibited phosphodiesterase activity with a mixed pattern of inhibition even when ion-exchange chromatography was used to partially purify phosphodiesterase away from the tyrosine kinase activity. Moreover, tyrphostin 51, another tyrosine kinase inhibitor, was found to also inhibit partially purified phosphodiesterase activity noncompetitively. These data suggest that HT4.7 phosphodiesterase activity is dominated by PDE4 and can be regulated by genistein and tyrphostin 51 by a tyrosine kinase-independent mechanism.  相似文献   

7.
The biosynthesis of the functional, endogenous cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP) is performed by the plasma membrane-bound enzyme cyclic PIP synthase, which combines prostaglandin E (PGE) and activated inositol phosphate (n-IP) to cyclic PIP. The Km values of the enzyme for the substrates PGE and n-IP are in the micromolar range. The plasma membrane-bound synthase is activated by fluoride, by the stable GTP analog GMP-PNP, by protamine or biguanide, by noradrenaline, and by insulin. The activation by protamine or biguanide and fluoride (10 mM) is additive, which may indicate the presence of two different types of enzyme, comparable to phospholipase Cbeta and phospholipase Cgamma. Plasma membrane-bound cyclic PIP synthase is inhibited by the protein tyrosine kinase inhibitor tyrphostin B46 with an IC50 of 1.7 microM. However, the solubilized and gel-filtrated enzyme is no longer inhibited by tyrphostin, indicating that the activity of cyclic PIP synthase is connected with the activity of a membrane-bound protein tyrosine kinase. Cyclic PIP synthase activity of freshly prepared plasma membranes is unstable. Upon freezing and rethawing of liver plasma membranes, this instability is increased about 2-fold. Protein tyrosine phosphatase inhibitors [vanadate, fluoride (50-100 mM)] stabilize the enzyme activity, but protease inhibitors do not, indicating that inactivation of the enzyme is connected with protein tyrosine dephosphorylation. Cyclic PIP synthase is present in all tissues tested, like brain, heart, intestine, kidney, liver, lung, skeletal muscle, spleen, and testis. Apart from liver, cyclic PIP synthase activity in most tissues is rather low, but it can be increased up to 5-fold when protein tyrosine phosphatase inhibitors like vanadate are present in the homogenization buffer. Preincubation of cyclic PIP synthase of liver plasma membranes with the tyrosine kinase src kinase causes a 2-fold increase of cyclic PIP synthase activity, though this is certainly not the physiological role played by src kinase in intact cells. The data indicate that cyclic PIP synthase can be activated by two separate mechanisms: by a G protein or by protein tyrosine phosphorylation.  相似文献   

8.
Abstract: In this study, the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic nucleotide accumulation and melatonin (MT) production in dispersed rat pinealocytes were measured. Treatment with PACAP (10−7 M ) increased MT production 2.5-fold. PACAP (10−7 M ) also increased cyclic AMP accumulation four- to fivefold; this effect was potentiated two- to three-fold by α1-adrenergic activation. This potentiation appears to involve protein kinase C (PKC) because α1-adrenergic activation is known to translocate PKC and the PACAP-stimulated cyclic AMP accumulation was potentiated ninefold by a PKC activator, 4β-phorbol 12-myristate 13-acetate (PMA). Phenylephrine and PMA also potentiated the PACAP-stimulated MT accumulation. These results indicate that cyclic AMP is one second messenger of PACAP in the pineal gland and that the effects of PACAP on cyclic AMP and MT production can be potentiated by an α1-adrenergic → PKC mechanism. In addition to these findings, it was observed that PACAP treatment with or without phenylephrine or PMA did not alter cyclic GMP accumulation. This indicates that PACAP is the first ligand identified that increases cyclic AMP accumulation in the pineal gland without increasing cyclic GMP accumulation. That PACAP fails to activate the vasoactive intestinal peptide/cyclic GMP pathway suggests that the vasoactive intestinal peptide receptors present in the pineal may be distinct from the type II PACAP receptors.  相似文献   

9.
Activation of alpha 1-adrenoceptors appears to amplify beta-adrenergic stimulation of cyclic AMP (cAMP) accumulation in rat pinealocytes severalfold by a mechanism involving activation of a Ca2+-, phospholipid-dependent protein kinase (protein kinase C). The mechanism of action of protein kinase C was investigated in this report using intact cells. Activation of protein kinase C with 4 beta-phorbol 12-myristate 13-acetate (PMA; 10(-7) M) or the alpha 1-adrenergic agonist phenylephrine (PE; 10(-6) M) did not inhibit cAMP efflux in beta-adrenergically stimulated cells. The amplification of the beta-adrenergic cAMP response by these agents also occurred in the presence of isobutylmethylxanthine (10(-3) M) and Ro 20-1724 (10(-4) M), an observation suggesting that inhibition of cAMP phosphodiesterase activity is not the mechanism of action. Furthermore, although PMA (10(-7) M) caused a sixfold increase in the magnitude of the cAMP response to isoproterenol, it did not alter the EC50 of the response (1.7 X 10(-8) M), a result indicating that protein kinase C activation does not alter beta-adrenoceptor sensitivity. The cAMP response following cholera toxin pretreatment (60-120 min) was rapidly and markedly enhanced by alpha 1-adrenergic agonists (cirazoline greater than PE greater than methoxamine), by phorbol esters (PMA greater than 4 beta-phorbol 12,13,-dibutyrate much greater than 4 alpha-phorbol 12,13-didecanoate), and by synthetic diacylglycerols (1,2-dioctanoylglycerol greater than 1-oleoyl 2-acetylglycerol much greater than diolein). The cAMP response to forskolin (10(-5)-10(-3) M) was also increased by PE (3 X 10(-6) M) and PMA (10(-7) M).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Abstract: In astrocytes, thrombin and thrombin receptor-activating activating peptide (TRAP-14), a 14-amino-acid agonist of the proteolytic activating receptor for thrombin (PART), significantly increased cell division as assessed by [3H]thymidine incorporation into DNA (EC50 = 1 n M and +650% at 100 n M for thrombin; EC50 = 3 µ M and +600% at 100 µ M for TRAP-14) and nerve growth factor (NGF) secretion (approximately twofold at 100 n M thrombin or 100 µ M TRAP-14). The [3H]thymidine incorporation was prevented by protein kinase C inhibitors (staurosporine and H7) or by down-regulation of this enzyme by chronic exposure of astrocytes to phorbol 12-myristate 13-acetate (PMA). Thrombin-induced NGF secretion was completely inhibited by protein kinase C inhibitors. Treatment with PMA stimulated NGF secretion 19-fold, and this effect was not further enhanced by thrombin. These data suggest an absolute requirement of protein kinase C activity for thrombin-induced NGF secretion and cell division. Pretreatment of astrocytes with pertussis toxin (PTX) reduced thrombin- and TRAP-14-induced DNA synthesis. PART activation caused a decrease in forskolin-stimulated cyclic AMP accumulation. PTX treatment prevented the inhibitory effect of PART activation on cyclic AMP accumulation, suggesting that a PTX-sensitive G protein, such as Gi or Go, is involved in thrombin-induced cell division. In contrast, thrombin-induced NGF secretion was not inhibited by PTX. Finally, the protein tyrosine kinase inhibitor herbimycin A partially but significantly prevented thrombin- and TRAP-14-induced cell division but was without effect on NGF secretion. Taken together, these results demonstrate that, in astrocytes, PART(s)-triggered cell division or NGF secretion is mediated by distinct transduction mechanisms.  相似文献   

12.
The effect of phorbol esters on cyclic AMP production in rat CNS tissue was examined. Using a prelabeling technique for measuring cyclic AMP accumulation in brain slices, it was found that phorbol 12-myristate, 13-acetate (PMA) enhanced the cyclic AMP response to forskolin and a variety of neurotransmitter receptor stimulants while having no effect on second messenger accumulation itself. A short (15-min) preincubation period with PMA was required to obtain maximal enhancement, whereas the augmentation was lessened by prolonged exposure (3 h) to the phorbol. The response to PMA was concentration dependent (EC50 = 1 microM) and regionally selective, being most apparent in forebrain, and was not influenced by removal of extracellular calcium or by inhibition of phosphodiesterase or phospholipase A2. Only those phorbols known to stimulate protein kinase C augmented the accumulation of cyclic AMP. Moreover, the membrane substrates phosphorylated by endogenous C kinase and by a partially purified preparation of this enzyme were similar. The results suggest that phorbol esters, by activating protein kinase C, modify the cyclic AMP response to brain neurotransmitter receptor stimulation in brain by influencing a component of the adenylate cyclase system beyond the transmitter recognition site.  相似文献   

13.
We have previously reported that alpha-thrombin induces in resting hamster fibroblasts (CCL39) the formation of inositol phosphates (IP) by activating a GTP-binding protein (G protein) sensitive to pertussis toxin (Paris, S., and Pouysségur, J. (1986) EMBO J. 5, 55-60). Here we show that IP formation in CCL39 cells can also be induced by NaF with AlCl3 and by vanadate. In the presence of Li+, IP accumulation is linear over 30 min with no detectable lag and is concentration-dependent. NaF alone is slightly stimulatory, but a marked potentiation is observed in the presence of AlCl3, by itself without effect. Maximal stimulation is obtained with 10 mM NaF and 3 microM AlCl3, and with vanadate half-maximal effect is achieved at 0.3 mM. Both stimulations are markedly inhibited (up to 80%) by pertussis toxin (half-maximal inhibition at 1-2 ng/ml). We therefore conclude that phospholipase C is stimulated by NaF plus AlCl3 (presumably acting as AlF-4) and by vanadate by direct activation of the regulatory G protein. In addition, NaF inhibits the inositol-1-phosphatase, but this effect is not potentiated by AlCl3. Similarly, vanadate inhibits inositol trisphosphate degradation. Maximal stimulations of phospholipase C by AlF-4 and vanadate are not additive, whereas they are both additive with thrombin effects. Pretreatment of cells for 15 min with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate nearly completely abolishes induction of IP formation by AlF-4 and vanadate, suggesting that protein kinase C exerts a feedback negative control either on the G protein or on phospholipase C itself. An increase in cellular cyclic AMP similarly results in a marked attenuation of AlF-4-induced IP formation, indicating that activation of phospholipase C can be controlled also by cyclic AMP. However, the stimulatory effect of AlF-4 on phospholipase C is clearly dissociated from its effect on the adenylate cyclase system.  相似文献   

14.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

15.
The ability of glucagon (10 nM) to increase hepatocyte intracellular cyclic AMP concentrations was reduced markedly by the tumour-promoting phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate). The half-maximal inhibitory effect occurred at 0.14 ng/ml TPA. This action occurred in the presence of the cyclic AMP phosphodiesterase inhibitor isobutylmethylxanthine (1 mM) indicating that TPA inhibited glucagon-stimulated adenylate cyclase activity. TPA did not affect either the binding of glucagon to its receptor or ATP concentrations within the cell. TPA did inhibit the increase in intracellular cyclic AMP initiated by the action of cholera toxin (1 microgram/ml) under conditions where phosphodiesterase activity was blocked. TPA did not inhibit glucagon-stimulated adenylate cyclase activity in a broken plasma membrane preparation unless Ca2+, phosphatidylserine and ATP were also present. It is suggested that TPA exerts its inhibitory effect on adenylate cyclase through the action of protein kinase C. This action is presumed to be exerted at the point of regulation of adenylate cyclase by guanine nucleotides.  相似文献   

16.
The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4-5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50-2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose-response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The uptake and metabolism of cyclic [(3)H]AMP in ovarian cells was also studied in relation to steroidogenesis. When ovarian cells were incubated for 2h in the presence of increasing concentrations of cyclic [(3)H]AMP, the radioactivity associated with the cells increased almost linearly up to 250mum-cyclic [(3)H]AMP concentration in the incubation medium. The (3)H label in the cellular extract was recovered mainly in the forms ATP, ADP, AMP, adenosine and inosine, with cyclic AMP accounting for less than 1% of the total tissue radioactivity. Incubation of cyclic AMP in vitro with ovarian cells resulted in a rapid breakdown of the nucleotide in the medium. The degradation products in the medium have been identified as AMP, adenosine and inosine. The rapid degradation of cyclic AMP by phosphodiesterase(s) makes it difficult to correlate changes in cyclic AMP concentrations with steroidogenesis. These observations thus provide an explanation for the previously observed lack of cyclic AMP accumulation under conditions in which low doses of choriogonadotropin stimulated steroidogenesis without any detectable changes in cyclic AMP accumulation.  相似文献   

17.
The hypothesis that Gi might be involved in the alpha 1-adrenergic, protein kinase C (PKC)-mediated amplification of beta-adrenergic cyclic AMP stimulation in rat pinealocytes was investigated. Treatment of pinealocytes with a high concentration of pertussis toxin (500 ng/ml, 18 h) almost completely (approximately 95%) inactivated two cell membrane G-proteins (kDa 40.7 and 39.8) judged by back ADP-ribosylation of pinealocyte membrane proteins. However, this treatment failed to inhibit either the beta-adrenergic (isoprenaline, ISO 10(-6) M), alpha 1-plus beta-adrenergic (noradrenaline, NA 10(-5) M) or beta-adrenergic plus 12-O-tetradecanoylphorbol 13-acetate (TPA 10(-7) M) induced stimulation of cyclic AMP or cyclic GMP. These results suggest that alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cyclic AMP and cyclic GMP does not involve a pertussis toxin-sensitive G-protein.  相似文献   

18.
These experiments examined the mechanism by which phenylephrine enhances beta-adrenoceptor-stimulated cyclic AMP formation in rat hypothalamic and preoptic area slices. To this end we manipulated phospholipase C. phospholipase A2, and protein kinase C activity in slices and assessed the effects of these manipulations on phenylephrine augmentation of isoproterenol-stimulated cyclic AMP generation. Since previous work indicated that estrogen enhances the alpha 1-component of cyclic AMP formation, we examined slices from both gonadectomized and estrogen-treated animals. The alpha 1-antagonist prazosin eliminated phenylephrine augmentation of the beta-response, suggesting that alpha 1-adrenergic receptors mediate the potentiation of cyclic AMP formation. Inhibition of protein kinase C by H7 attenuated the alpha 1-augmentation of beta-stimulated cyclic AMP formation. Staurosporine, a more potent protein kinase C inhibitor, completely abolished the alpha 1-augmenting response. In addition, phenylephrine potentiation of the isoproterenol response was not observed if protein kinase C was first stimulated directly with a synthetic diacylglycerol (1-oleoyl-2-acetyl-sn-glycerol) or phorbol ester (phorbol 12,13-dibutyrate). Neomycin, an inhibitor of phospholipase C, decreased alpha 1-receptor enhancement of beta-stimulated cyclic AMP formation, whereas quinacrine, an inhibitor of phospholipase A2, did not. The data suggest that the postreceptor mechanism involved in alpha 1-adrenergic receptor potentiation of cyclic AMP generation in hypothalamic and preoptic area slices includes activation of phospholipase C and protein kinase C.  相似文献   

19.
Primary exposure of Tetrahymena cells to insulin gave rise to hormonal (insulin) imprinting in the offspring generations, as judged from the increase in binding upon reexposure to insulin. Vanadate mimicked the action of insulin, inasmuch as it also induced imprinting for insulin, whereas the other tyrosine kinase activator tested, namely H2O2, had no such effect. However, combined treatment with vanadate+H2O2 + insulin induced a more pronounced imprinting for insulin than either insulin or vanadate on their own. The tyrosine kinase inhibitor genistein, a plant flavonoid, did not change the value for insulin binding significantly relative to the control immediately after exposure, but increased it slightly in the offspring generations after 24 h at high dilution. Upon combination with insulin, 10(-4)M genistein inhibited imprinting by insulin. These experimental observations suggest that there may be a key role for tyrosine kinase activity in the mechanism (development) of imprinting.  相似文献   

20.
Erythrophagocytic capacity of trophozoites of Entamoeba histolytica is considered a factor in the virulence of this pathogenic protozoan. We present evidence showing that such activity resembles the ingestion of microorganisms by highly differentiated phagocytic cells, such as macrophages. Previous treatment of the trophozoites with genistein or tyrphostin, inhibitors of tyrosine protein kinases, with staurosporine, a protein kinase C inhibitor, and wortmannin, a fungal metabolite that inhibits phosphoinositide 3-OH kinase, significantly inhibited their erythrophagocytic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号