首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aland Island Eye Disease (AIED) is an X-linked form of ocular hypopigmentation--also known as Forsius-Eriksson, or type 2, ocular albinism--in which affected males demonstrate subnormal visual acuity, protanomalous red-green colorblindness, axial myopia, astigmatism, hypoplasia of the fovea, and hypopigmentation of the fundus. A patient has previously been described who, in addition to AIED, manifested a contiguous gene syndrome which included congenital adrenal hypoplasia (AHC), glycerol kinase deficiency (GKD), and Duchenne muscular dystrophy (DMD). In the present paper report we report the molecular genetic analysis of his deletion. Initially, multiplex polymerase-chain-reaction amplification was used to screen for a DMD-locus deletion which was then further characterized, using DMD cDNA and genomic probes, via Southern blot analysis. The deletion includes the region encompassed by probes C7 (DXS28) and DMD cDNA 8. Probes B24 (DXS67) and DMD cDNA 5b-7 show normal hybridization patterns and appear to flank the deletion, while the DMD cDNA 8 detects a junction fragment. Molecular genetic techniques have mapped the deletion in this patient to the subbands Xp21.3-21.2, between DXS67 and DMD.  相似文献   

2.
Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans > 15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (L1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to +/- 1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD.  相似文献   

3.
用Alu-PCR指纹图谱法分析了人Xp21.1-p21.3上一系列的酵母人工染色体(yeastartificialchromosome,YAC)克隆,发现其中的两个YAC克隆构成包含DXS166位点的重叠群,而且这一重叠群与以前构建的包含DMD基因全序列的YAC重叠群相连接,YAC克隆末端探针交叉杂交证实了这一重叠,使这一YAC重叠群至少延伸至DXS166位点,形成一个跨度为3.5Mb的YAC重叠群。基于这些重叠的YAC克隆绘制了这一区域的大尺度限制酶切图谱,并在这一图谱上定位了DXS166位点,从而确定了DXS166位点与DMD基因的物理关系。这一工作为DMD基因的5'远端调控作用研究及该区域未知基因的克隆奠定了基础。  相似文献   

4.
We report here on the order of three DNA markers, C7, B24, and L1, based on the arrangement of their fluorescently labeled hybridization sites in interphase cell nuclei. The three markers map distal to the Duchenne muscular dystrophy (DMD), glycerol kinase deficiency (GKD), and adrenal hypoplasia (AHC) loci on human chromosome Xp21.3. Their order has been a matter of controversy. In interphase chromatin, B24 maps between C7 and L1. We estimate from interphase distance that C7 and L1 are 300-500 kb apart. When the three markers are hybridized to interphase cells of Nijmegen1, a patient with DMD, GKD, and AHC, only C7 appears to be deleted, rather than both C7 and L1, as had been reported elsewhere. C7 is also the only one of the three markers deleted in several other DMD patients studied by others. The deletion results indicate that C7 is the most proximal of the three markers and allow the trio of ordered probes to be oriented on the chromosome: cen-C7(DXS28)-B24(DXS67)-L1(DXS68)-tel.  相似文献   

5.
Summary Genomic DNA from five previously unreported patients with glycerol kinase deficiency (GKD), dystrophic myopathy, and adrenal insufficiency were studied with genomic probes and cDNA probes for the Duchenne muscular dystrophy (DMD) locus. These individuals, together with those reported by ourselves and others, show that patients with a contigous gene syndrome involving the DMD, GK, and adrenal hypoplasia congenita (AHC) loci have a broader distribution of microdeletion breakpoints than those observed among patients with classical DMD. This study demonstrates the use of the DMD cDNA probes to delineate the centromeric deletion breakpoints for patients with Xp21 microdeletions extending beyond the DMD locus. It also shows the practical diagnostic application of the DMD cDNA probes when the diagnosis of GKD is entertained in a patient with known DMD and only DNA is available for study.  相似文献   

6.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

7.
Summary We have isolated a random cosmid cX5 (DXS148), which maps into a small Xp21 deletion associated with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CGD), retinitis pigmentosa (RP) and McLeod syndrome. cX5 maps proximally outside several other deletions associated with DMD, glycerol kinase deficiency (GK) and adrenal hypoplasia (AHC). The following order of loci is proposed: centromere-OTC-cX5 (DXS148)-754 (DXS84)-PERT87 (DXS164)/DMD-telomere. A subclone cX5.7, isolated from this cosmid, identifies an MspI RFLP, with a minor allele frequency of 35%. This probe forms an important adjunct to the existing RFLPs for family studies in Duchenne muscular dystrophy.  相似文献   

8.
Summary We report a 2-year-old boy with Duchenne muscular dystrophy (DMD), glycerol kinase deficiency (GK) and adrenal hypoplasia congenita (AHC). At three weeks of age, the patient was hospitalized for the first time with symptoms of hypotone dehydration because of AHC, At present, he shows severe muscular hypotonia and developmental delay. The patient and his family were referred to us for prenatal diagnosis and carrier testing in the mother of the patient and the mother's sister, respectively. The patient's DNA was examined by Southern blot and polymerase chain reaction analyses, using cDNA and genomic probes within and around the dystrophin (DYS) locus. A deletion was revealed, spanning DXS28, the whole dystrophin locus, DXS84 and DXS148, whereas DXS67, DXS68 (pter) and OTC (cen) were found to be retained. The cytogenetically visible microdeletion was also seen in the patient's mother, but not in the mother's sister or the patient's maternal grandmother. Our findings support the locus order pter-DXS67-DXS68-DXS28-AHC-GK-DMD-cen.  相似文献   

9.
Physical mapping distal to the DMD locus   总被引:3,自引:0,他引:3  
We report a new locus, designated JC-1, which maps between the gene responsible for adrenal hypoplasia (AHC) and the gene that encodes glycerol kinase (GK) in Xp21.2-21.3. The probe identifying this locus was obtained by cloning the distal sequence of a junction fragment from a Duchenne muscular dystrophy (DMD) patient with a large deletion. Pulsed-field gel electrophoresis analysis shows that a region of at least 4 Mb separates the 3' end of the dystrophin gene and the closest distal marker to AHC, DXS28. This region of the human genome contains few genes whose deletion results in a clinical phenotype. JC-1 is a useful probe from which to initiate strategies directed at cloning the AHC and GK loci.  相似文献   

10.
Genetic and molecular studies show that the Duchenne muscular dystrophy (DMD) locus at Xp21 is large and complex. We have analyzed this region using pulsed field gel electrophoresis (PFGE) and have determined physical distances between Xp21 probes. The sum of the sizes of the Sfil restriction fragments detected by these probes is greater than 4000 kb. The deletion endpoints in two DMD patients were detected by observing changes in these restriction fragments. In addition, the Xp21 breakpoint for the X;1 translocation in an affected female was mapped. These results demonstrate the applicability of PFGE for analysis of Xp21, and should facilitate the mapping of other translocations and deletions in this region, some of which lead to glycerol kinase deficiency and adrenal hypoplasia as well as DMD.  相似文献   

11.
Summary Congenital adrenal hypoplasia (CAH) and glycerol kinase deficiency (GKD) were diagnosed in a male during the neonatal period. On prometaphase chromosomes there was an interstitial deletion involving Xp21.2 and possibly Xp21.3 in the propositus and his mother. Duchenne muscular dystrophy (DMD) was excluded on the basis of normal serum creatine kinase and a muscle biopsy. Molecular hybridization of DNA from the propositus with 11 probes covering Xp21, including the DMD locus, was normal. In situ hybridization with the probe pERT87.15 showed a normal signal at the expected site indicating that the DMD locus was preserved and not translocated. This suggests that the DMD locus is located at the most proximal part of the sub-band Xp21.2 or in Xp21.1, and that the DXS68 (probe L1) is far from it on the distal flanking DNA.  相似文献   

12.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

13.
We have performed Southern blot analysis on a large, four-generation kindred with Duchenne muscular dystrophy (DMD). Probes 754 (DXS 84), pERT87-1, pERT87-8, pERT87-15 (DXS164), and pXJ-1.1 did not hybridize to digested genomic DNA of affected males. Obligate-carrier mothers and unaffected brothers showed signals of a single X-chromosome copy intensity, and suspected noncarrier sisters demonstrated either a single band of two-copy intensity or informative polymorphisms. Uniform hybridization was seen with probes C7 (DXS28) and D2 (DXS43), which map distal to the DMD locus, and with OTC, which maps proximally. This deletion was present in six affected individuals and has been transmitted through 3 generations to date. On high-resolution chromosome analysis, a deletion within band Xp21 was consistently observed in one affected male studied and in one of the two X chromosomes in obligate carriers. This large molecular and cytogenetically visible deletion in affected DMD individuals without glycerol kinase deficiency, chronic granulomatous disease, retinitis pigmentosa (RP), or ornithine transcarbamylase deficiency is a very rare finding and should prove useful in specifically cloning additional probes within and flanking the DMD locus.  相似文献   

14.
15.
Linkage data between X-linked retinitis pigmentosa (XLRP) and nine X-chromosomal markers are reported. To test the assignment of XLRP to the Xp21 region (as considered at Human Gene Mapping 8), an analysis of XLRP and six markers flanking this region was undertaken. The XLRP locus was found to be excluded from the chromosome distal to ornithine transcarbamylase (OTC) (P = 6.5 X 10(-5]. Further data were accumulated with three more probes proximal to DXS7 (L1.28), the closest linked probe. Multipoint analysis of these data suggests a posterior probability of .94 that XLRP is proximal to DXS7 (L1.28), which has been mapped to the region Xp11.3.  相似文献   

16.
T Meitinger  Y Boyd  R Anand  I W Craig 《Genomics》1988,3(4):315-322
Balanced translocations with a breakpoint in the Xp21 region are likely to disrupt the giant Duchenne muscular dystrophy (DMD) locus and can be demonstrated in females suffering from the disease. Pulsed field gel electrophoresis allows the positioning of these breakpoints by detecting junction fragments on the derived chromosomes; DNA probes hybridizing to these fragments may be located as many as several hundred kilobases away from the breakpoints. By using this approach, 11 translocation breakpoints from the Xp21 region have been analyzed. The localization of three previously examined breakpoints was confirmed. Six other breakpoints, including a breakpoint flanking the DMD gene and not associated with the DMD phenotype, could be positioned relative to SfiI sites on a 3.5-Mb restriction map of the region.  相似文献   

17.
A comprehensive physical contig of yeast artificial chromosomes (YACs) and cosmid clones between ZNF21 and DXS255 has been constructed, spanning 2 Mb within the region Xp11.23–p11.22. As a portion of the region was found to be particularly unstable in yeast, the integrity of the contig is dependent on additional information provided by the sequence-tagged site (STS) content of cosmid clones and DNA marker retention in conventional and radiation hybrids. The contig was formatted with 43 DNA markers, including 19 new STSs from YAC insert ends and an internalAlu-PCR product. The density of STSs across the contig ranges from one marker every 20 kb to one every 60 kb, with an average density of one marker every 50 kb. The relative order of previously known genes and expressed sequence tags in this region is predicted to be Xpter–ZNF21–DXS7465E (MG66)–DXS7927E (MG81)–WASP, DXS1011E, DXS7467E (MG21)–DXS- 7466E (MG44)–GATA1–DXS7469E (Xp664)–TFE3–SYP (DXS1007E)–Xcen. This contig extends the coverage in Xp11 and provides a framework for the future identification and mapping of new genes, as well as the resources for developing DNA sequencing templates.  相似文献   

18.
Summary We report a case of a boy with Duchenne muscular dystrophy (DMD) associated with GK deficiency (GK), congenital adrenal hypoplasia (AHC), and mental retardation. Cytogenetic analysis of prometaphasic chromosomes revealed an interstitial chromosome deletion at Xp21.2 possibly extending to Xp21.1 or Xp21.3. His phenotypically normal mother was heterozygous for this deletion. DNA probe analysis on Southern blots showed that the deletion affected the following probe sites: 754, pERT 84, 21A, XJ2.3, pERT 87, JBir, and J66-H1, whereas L1, C7, and CX5.4 probes gave a normal signal. Pulse field gel electrophoresis after SfiI digestion did not show abnormal fragments with L1. These data are consistent with a deletion of about 4 megabases and indicate that the GK and AHC loci are proximal to L1 and distal to J66-H1.  相似文献   

19.
本文应用从人类X柒色体Xp~(21)区不同部位分离得到的9种DNA探针,分析了100名正常中国人,38名DMD患者及其母亲X柒色体Xp~(21)区的14个限制性位点多态性(RSP;又称限制性片段长度多态性,RFLP)。发现正常的X染色体与携带DMD基因的X染色体Xp~(21)区的RFLP频率没有明显差别;在38例DMD患者中有7例的X染色体有DNA片段缺失;在本文分析的24例患者母杀中有17例是DMD基因携带者,她们在Xp~(21)区的RFLP均存在杂合的多态性,因此可以应用RFLP连锁分析对这些家系进行DMD的产前诊断。  相似文献   

20.
Incontinentia pigmenti (IP) is an X-linked dominant disorder characterized by developmental anomalies of the tissues and organs derived from embryonic ectoderm and neuroectoderm. An IP locus, designated IP1, probably resides in Xp11.21, since five unrelated patients with nonfamilial IP have been identified who possess constitutional de novo reciprocal X;autosome translocations involving Xp11.21. We have used a series of somatic cell hybrids containing the rearranged chromosomes derived from three of the five IP1 patients, along with other hybrid cell lines, to map probes in the vicinity of the IP1 locus. Five anonymous DNA loci--DXS422, DXS14, DXS343, DXS429, and DXS370--have been mapped to a region within Xp11.21, between two IP1 X-chromosomal translocation breakpoints; the IP1 t(X;17) breakpoint is proximal (centromeric) to this region, and the IP1 t(X;13) and t(X;9) X-chromosomal breakpoints lie distal to it. While no IP1 translocation breakpoint has yet been identified by pulsed-field gel electrophoretic (PFGE) analysis, an overlap between three probes--p58-1, 7PSH3.5, and cpX210--has been detected, placing these probes within 125 kb. Four probes--p58-1, 7PSH3.5, cpX210, and 30CE2.8--have been helpful in constructing a 1,250-kb PFGE map of the region between the breakpoints; these results suggest that the IP1 X-chromosomal translocation breakpoints are separated by at least this distance. The combined somatic cell hybrid and PFGE analyses we report here favor the probe order DXS323-(IP1 t(X;13), IP1, t(X;9]-(DXS422, DXS14, DXS343, DXS429, DXS370)-(IP1 t(X;17), DXZ1). These sequences provide a starting point for identifying overlapping genomic sequences that span the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should now assist the cloning of this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号