首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chloroplast inheritance and DNA variation in sweet, sour, and ground cherry   总被引:1,自引:0,他引:1  
Sour cherry (Prunus cerasus L.) is an allotetraploid and both sweet cherry (P avium L.) and ground cherry (P. fruticosa Pall.) are the proposed progenitor species. The study investigated the maternal species origin(s) of sour cherry using chloroplast DNA (cpDNA) markers and a diverse set of 22 sweet, 25 sour, and 7 ground cherry selections. Two cpDNA restriction fragment length polymorphisms (RFLPs) and one polymerase chain reaction (PCR) fragment length polymorphism were identified among the 54 selections. The three polymorphisms considered together resolved four haplotypes. Analysis of sour cherry progeny indicated that the chloroplast genome is maternally inherited and therefore appropriate to use in determining maternal phylogenetic relationships. Ground cherry was found more likely than sweet cherry to be the maternal progenitor species of sour cherry since 23 of 25 of the sour cherry selections had the most prevalent ground cherry haplotype. However, the other two sour cherry selections tested had the most prevalent sweet cherry haplotype and a wild French sweet cherry selection had the most prevalent ground cherry haplotype. The results underscore the importance of using diverse Prunus germplasm to investigate phylogenetic relationships.  相似文献   

2.
. Gametophytic self-incompatibility (GSI) typically "breaks down" due to polyploidy in many Solanaceous species, resulting in self-compatible (SC) tetraploid individuals. However, sour cherry (Prunus cerasus L.), a tetraploid species resulting from hybridization of the diploid sweet cherry (P. avium L.) and the tetraploid ground cherry (P. fruticosa Pall.), is an exception, consisting of both self-incompatible (SI) and SC individuals. Since sweet cherry exhibits GSI with 13 S-ribonucleases (S-RNases) identified as the stylar S-locus product, the objectives were to compare sweet and sour cherry S-allele function, S-RNase sequences and linkage map location as initial steps towards understanding the genetic basis of SI and SC in sour cherry. S-RNases from two sour cherry cultivars that were the parents of a linkage mapping population were cloned and sequenced. The sequences of two S-RNases were identical to those of sweet cherry S-RNases, whereas three other S-RNases had unique sequences. One of the S-RNases mapped to the Prunus linkage group 6, similar to its location in sweet cherry and almond, whereas two other S-RNases were linked to each other but were unlinked to any other markers. Interspecific crosses between sweet and sour cherry demonstrated that GSI exists in sour cherry and that the recognition of common S-alleles has been maintained in spite of polyploidization. It is hypothesized that self-compatibility in sour cherry is caused by the existence of non-functional S-RNases and pollen S-genes that may have arisen from natural mutations.  相似文献   

3.
A study of the collection of sour cherry, sweet cherry, common plum, diploid and tetraploid types of plums, and apricots grown in Belarus carried out using 20 SSR markers showed that they are characterized by high genetic diversity. Among 106 genotypes, 524 polymorphic alleles were identified. The average number of alleles was 15.4 in common plum samples, 11.3 in diploid and tetraploid plum, 9.3 in sour cherry, 6.0 in apricot, and 4.9 in sweet cherry. The greatest genetic diversity is characteristic of common plum cultivars (PD = 0.811). The genetic diversity decreases as follows: diploid plum (PD = 0.741), sour cherry (PD = 0.721), apricot (PD = 0.673), and sweet cherry (PD = 0.655). Cluster analysis shows that the degree of intraspecific divergence in sour cherry and sweet cherry cultivars is less than that of common plum, diploid plum, and apricot plum. Although apricots and plums belong to the subgenus Prunophora, according to the results of SSR analysis, apricot cultivars form a cluster that is more distant from both Cerasus and Prunophora. A set of seven SSR markers (EMPA001, EMPA005, EMPA018, EMPA026 and BPPCT025, BPPCT026, BPPCT039) was selected for DNA identification of cultivars of sour cherry, sweet cherry, common plum, diploid plum, and apricot, as well as species and interspecies hybrids.  相似文献   

4.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, the S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead, the genotype dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. We previously determined that sour cherry has non-functional S-haplotypes for the S 1 -, S 6 - and S 13 -haplotypes that are also present in diploid sweet cherry (P. avium L.). The mutations underlying these non-functional S-haplotypes have been determined to be structural alterations of either the S-RNase or SFB. Based on these structural alterations we designed derived cleaved amplified polymorphic sequence (dCAPS) markers and S-haplotype specific primer pairs that took advantage of either the length polymorphisms between S-haplotypes, differential S-haplotype sequences, or differential restriction enzyme cut sites. These primer pairs can discriminate among the mutant and wild-type S-haplotypes thereby enabling the identification of the S-haplotypes present in a sour cherry individual. This information can be used to determine whether the individual is either SC or SI. In a sour cherry breeding program, the ability to discriminate between SI and SC individuals at the seedling stage so that SI individuals can be discarded prior to field planting, dramatically increases the program’s efficiency and cost-effectiveness.  相似文献   

5.
Cherry leaf spot (CLS), caused by the fungal pathogen Blumeriella jaapii (Rehm) Arx (telomorph Phloeosporella padi [Lib.] Arx), is a major disease in all humid cherry-growing regions worldwide causing leaf yellowing and defoliation. The diploid Prunus species, P. canescens, had previously been identified as a source of CLS resistance. Therefore, the objective of this study was to identify quantitative trait loci (QTL) for CLS resistance derived from P. canescens in both diploid sweet cherry (P. avium) and tetraploid sour cherry (P. cerasus). Because of the simpler genetics of diploid cherry, the initial investigation was done with P. canescens-derived materials from crosses with sweet cherry, followed by validation using P. canescens-derived plant materials from sour cherry. A major QTL controlling P. canescens-derived CLS resistance, named CLSR_G4, was identified on linkage group 4 in sweet cherry and validated in sour cherry. All CLS-resistant individuals had one P. canescens-derived allele for CLSR_G4. A second QTL may be necessary for CLS resistance as one-fifth–one-third of the progeny individuals with the P. canescens-derived allele for CLSR_G4 were susceptible.  相似文献   

6.
7.
Among members of the fish family Cyprinidae,a diploid—tetraploid relationship exists. The present study on electrophoretic patterns of 6-phosphogluconate dehydrogenase indicates that such diploid members as Barbus tetrazonamaintain allelic polymorphism at a single gene locus for this enzyme. Tetraploid members such as the carp and goldfish are endowed with two separate gene loci for 6-PGD. Tetraploid evolution apparently fixed two former alleles of the same locus as two separate gene loci. Furthermore, it appears that after becoming tetraploid, the carp and goldfish developed a separate regulatory mechanism for each locus; thus preferential activation of one or the other 6-PGD locus occurs in different tissues of tetraploid species. This investigation was supported in part by a grant (CA-05138) from the National Cancer Institute, U.S. Public Health Service, and in part by a research fund established in honor of General James H. Doolittle. Contribution No. 4-68, Department of Biology, City of Hope Medical Center.Dr. Bender is a recipient of International Postdoctoral Fellowship 3 F05-TW-01198-0152 from the U.S. Public Health Service.  相似文献   

8.
High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group.  相似文献   

9.
The cherry (Prunus avium), a self-incompatible diploid species, and the sour cherry (Prunus cerasus), a self-incompatible or self-compatible allotetraploid species derived from P. avium and Prunus fruticosa, share several S-RNase alleles, including S 13 . An inactive form, S 13 °, is found in some sour cherries. Two (AT) microsatellites are associated with allele S 13 -RNase, one in the first intron and one in the second. Their length polymorphisms were studied in 14 sweet and 17 wild cherries (both P. avium) and in 42 sour cherries. Fluorescent primers amplifying each microsatellite were designed and amplification products sized on an automated sequencer. Variants ranged from 247 to 273 bp for the first intron microsatellite and from 308 to 322 bp for the second. There were 34 combinations and, surprisingly, the lengths of the two microsatellites were correlated. Generally, the sweet, wild and sour cherries had different combinations, and the four examples of S 13 °-RNase were associated with three different combinations. Certain sequences associated with the microsatellites match footprints of transposons. The distribution of combinations indicated little overlap between the three populations analysed and provided useful insights into relationships of some of the accessions allowing some parentages to be checked. In the diploid sweet and wild cherries, S 13 variants presumably resulted from slippage during replication, but in the tetraploid sour cherries, which can have more than one copy of S 13 or S 13 °, intra-allelic crossing over may have generated new variants. The possible involvement of transposable elements in the origin of these microsatellites is considered.  相似文献   

10.
Mature seeds of diploid and tetraploidHibiscus species were analyzed for enzyme activity (alcohol dehydrogenase, malate dehydrogenase, leucine aminopeptidase), total protein content, DNA amount and dry weight. The recently formed tetraploid,H. radiatus, generally had enzyme and protein levels very similar to the sum of its progenitors, while the more ancient speciesH. acetosella had several lower levels. This difference may reflect the greater amount of timeH. acetosella has had to evolve dosage compensations.Michigan Agricultural Experiment Station Journal Article 9665.A part of this research was used to satisfy the requirements ofA. Hoisington for a M.S. degree at the University of South Carolina.  相似文献   

11.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead the genotype-dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. Two new S-haplotypes from sour cherry, S(33) and S(34), that are presumed to be contributed by the P. fruticosa species parent, the complete S-RNase and SFB sequences of a third S-haplotype, S(35), plus the presence of two previously identified sweet cherry S-haplotypes, S(14) and S(16) are described here. Genetic segregation data demonstrated that the S(16)-, S(33)-, S(34)-, and S(35)-haplotypes present in sour cherry are fully functional. This result is consistent with our previous finding that 'hetero-allelic' pollen is incompatible in sour cherry. Phylogenetic analyses of the SFB and S-RNase sequences from available Prunus species reveal that the relationships among S-haplotypes show no correspondence to known organismal relationships at any taxonomic level within Prunus, indicating that polymorphisms at the S-locus have been maintained throughout the evolution of the genus. Furthermore, the phylogenetic relationships among SFB sequences are generally incongruent with those among S-RNase sequences for the same S-haplotypes. Hypotheses compatible with these results are discussed.  相似文献   

12.
The Rosaceae Conserved Orthologous Set (RosCOS) provides a gene-based genome-wide set of markers that have been used in comparative analyses of peach (Prunus persica), apple (Malus × domestica), and strawberry (Fragaria spp.). In order to extend the use of these RosCOS to sweet cherry (Prunus avium L.), we identified markers that are polymorphic in breeding germplasm. Ninety-five percent (595/627) of previously designed RosCOS primer pairs amplified a product in six sweet cherry cultivars predicted to represent the range of genetic diversity in breeding germplasm. A total of 45% (282/627) RosCOS were polymorphic among the six cultivars, and allele number ranged from 2 to 6, with a genome-wide mean of 2.35. A subset of 92 genome-wide single nucleotide polymorphisms (SNPs) corresponding to 76 RosCOS was analyzed in 36 founder accessions and progeny. The expected and observed heterozygosity suggested that 83% of the RosCOS were in Hardy–Weinberg equilibrium, implying that most RosCOS behave as neutral markers. Principal coordinate analysis (PCO) identified one wild accession and two Spanish landraces that clustered differently from the other accessions. The relatively high number of unique alleles found in the three differentially clustered selections suggested that their use as parents has potential to increase the genetic diversity in future US-bred cultivars. Of the 92 RosCOS SNPs, 81 SNPs that represented 68 genome-wide RosCOS segregated in four mapping populations. These RosCOS were mapped in four F1 populations, thereby greatly improving the genetic linkage map of sweet cherry.  相似文献   

13.
Linkage maps of the sweet cherry cultivar ‘Emperor Francis’ (EF) and the wild forest cherry ‘New York 54’ (NY) were constructed using primarily simple sequence repeat (SSR) markers and gene-derived markers with known positions on the Prunus reference map. The success rate for identifying SSR markers that could be placed on either the EF or NY maps was only 26% due to two factors: a reduced transferability of other Prunus-species-derived markers and a low level of polymorphism in the mapping parents. To increase marker density, we developed four cleaved amplified polymorphic sequence markers (CAPS), 19 derived CAPS markers, and four insertion–deletion markers for cherry based on 101 Prunus expressed sequence tags. In addition, four gene-derived markers representing orthologs of a tomato vacuolar invertase and fruit size gene and two sour cherry sorbitol transporters were developed. To complete the linkage analysis, 61 amplified fragment length polymorphism and seven sequence-related amplified polymorphism markers were also used for map construction. This analysis resulted in the expected eight linkage groups for both parents. The EF and NY maps were 711.1 cM and 565.8 cM, respectively, with the average distance between markers of 4.94 cM and 6.22 cM. A total of 82 shared markers between the EF and NY maps and the Prunus reference map showed that the majority of the marker orders were the same with the Prunus reference map suggesting that the cherry genome is colinear with that of the other diploid Prunus species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A lemon tree resistant to citrus tracheomycotic disease Mal secco (Phoma tracheiphila) found in a Greek orchard and its progenies were evaluated. Scions budded on sour orange and Volkameriana rootstocks or cuttings rooted in mist were placed under natural infections or inoculated artificially with Mal secco inoculum. No disease symptoms appeared on the original tree, while in bud-progenies only 16 out of approximately 2500 field grown trees were diseased by Mal secco. In 45 artificially inoculated trees only two were infected by the fungus. Analysis of leaf proteins using electrophoresis and further genetic control of gene/enzyme 6-Phosphogluconate dehydrogenase (6-PGD) system were carried out for the resistant selection: the Greek varieties Maglini, Adamopoulou, Karystini and the Italian Monachello and Interdonato. Protein analysis showed a close relationship of the resistant selection with var. Maglini, of which a scion is the resistant selection, while the isozyme genetic marker showed three different electrophoretic patterns, the resistant selection being in a separate pattern. Some phenotypical differences between the resistant selection and Maglini were also observed. The phenotypical differences, the resistance to Mal secco, the differences in proteins from all other varieties except Maglini and the different electrophoretic pattern of 6-PGD of this selections vs other varieties, suggest a new cultivar, for which the name “Ermioni” is proposed.  相似文献   

15.
Isozyme variability was examined in 13 geographically isolated populations of the endemic arctic hairy lousewort (Pedicularis dasyantha) in the Svalbard Archipelago, 80° N latitude, Norway. Of the 23 enzyme systems screened on five buffer systems 18 were interpretable. Of the 31 reliable loci, only 6-phosphogluconate dehydrogenase (6-Pgd), was polymorphic. However, no heterozygotes were detected. Frequencies for allele 1 among the populations varied from 1.00 in the north to 0.00 in the south and 0.53 in the central “overlap” region. At the species level the mean number of alleles per locus (A) was 1.03. Percentage of polymorphic loci (P) was 3%. Expected heterozygosity (He) was 0.016. At the population level the mean number of alleles per locus was 1.01, and 1.1% of the loci were polymorphic. He was 0.004. These values are low compared to endemic, widespread, selling, and outcrossed species. Flower color morphs were distinct. They varied within and among the 13 populations. The frequency of color morphs coincided with allele frequencies of 6-PGD: allele 1 was found in dark purple morphs, and allele 2 was found in light morphs. This species shows more isozyme genetic variability than the five other species reported in the genus but generally less variation than other species with limited regional distributions. Low-level genetic variation in this diploid species may be a result of colonization events coupled with genetic drift, founder effects, and strong natural selection. Additional factors include the self-compatible reproductive system and the long-lived perennial habit.  相似文献   

16.
The effects of cell ploidy on the biochemical characteristics of cultured cells were compared using human diploid vs tetraploid fibroblasts isolated with a non-selective method. Their DNA replication was compared by thymidine incorporation, and DNA content by Feulgen staining and quantitative analysis. Their RNA and protein content, cell sizes and the specific activities of glucose-6-phosphate dehydrogenase (G-6-PD) and 6-phosphogluconate dehydrogenase (6-PGD) were assayed quantitatively. With the exception of RNA content, all other parameters demonstrated a 2-fold increase reflecting the increase in cell ploidy. These direct gene dosage effects on the genetic material and functional expression of the human genome were in contrast to previous observations in other species and validate the use of human intraspecific euploid hybrids for biochemical and genetic studies.  相似文献   

17.
We report the sequence of 41 primer pairs of microsatellites from a CT-enriched genomic library of the peach cultivar 'Merrill O'Henry'. Ten microsatellite-containing clones had sequences similar to plant coding sequences in databases and could be used as markers for known functions. For microsatellites segregating at least in one of the two Prunus F(2) progenies analyzed, it was possible to demonstrate Mendelian inheritance. Microsatellite polymorphism was evaluated in 27 peach and 21 sweet cherry cultivars. All primer pairs gave PCR-amplification products on peach and 33 on cherry (80.5%). Six PCR-amplifications revealed several loci (14.6%) in peach and eight (19.5%) in sweet cherry. Among the 33 single-locus microsatellites amplified in peach and sweet cherry, 13 revealed polymorphism both in peach and cherry, 19 were polymorphic only on peach and one was polymorphic only on cherry. The number of alleles per locus ranged from 1 to 9 for peach and from 1 to 6 on sweet cherry with an average of 4.2 and 2.8 in peach and sweet cherry, respectively. Cross-species amplification was tested within the Prunus species: Prunus avium L. (sweet cherry and mazzard), Prunus cerasus L. (sour cherry), Prunus domestica L. (European plum), Prunus amygdalus Batsch. (almond), Prunus armeniaca L. (apricot), Prunus cerasifera Ehrh. (Myrobalan plum). Plants from other genera of the Rosaceae were also tested: Malus (apple) and Fragaria (strawberry), as well as species not belonging to the Rosaceae: Castanea (chestnut tree), Juglans (walnut tree) and Vitis (grapevine). Six microsatellites gave amplification on all the tested species. Among them, one had an amplified region homologous to sequences encoding a MADS-box protein in Malus x domestica. Twelve microsatellites (29.3%) were amplified in all the Rosaceae species tested and 31 (75.6%) were amplified in all the six Prunus species tested. Thirty three (80.5%), 18 (43.9%) and 13 (31.7%) gave amplification on chestnut tree, grapevine and walnut tree, respectively.  相似文献   

18.
We have isolated 44 SSRs from an AC‐enriched genomic library from almond (Prunus amygdalus Batsch.). Twenty SSRs were screened for their polymorphism in 16 cultivars and for their transportability in seven different Prunus species (peach, nectarine, apricot, European plum, Japanese plum, sweet cherry, sour cherry) and in apple. The expected heterozygosity ranged from 0.62 to 0.89. About 30% of primers gave successful amplification in seven different Prunus species; in two cases amplifications were obtained also in apple.  相似文献   

19.
The incompatibility genetics of sour cherry (Prunus cerasus), an allotetraploid species thought to be derived from sweet cherry (diploid) and ground cherry (tetraploid), were investigated by test crossing and by analysis of stylar ribonucleases which are known to be the products of incompatibility alleles in sweet cherry. Stylar extracts of 36 accessions of sour cherry were separated electrophoretically and stained for ribonuclease activity. The zymograms of most accessions showed three bands, some two or four. Of the ten bands seen, six co-migrated with bands that in sweet cherry are attributed to the incompatibility alleles S 1 , S 3 , S 4 , S 6, S 9 and S 13 . aanski Rubin, Erdi Botermo B, Koro and Ujfehertoi Furto, which showed bands apparently corresponding to S 1 and S 4 , were test pollinated with the sweet cherry Merton Late (S 1 S 4 ). Monitoring pollen tube growth, and, in one case, fruit set, showed that these crosses were incompatible and that the four sour cherries indeed have the alleles S 1 and S 4 . Likewise, test pollination of Marasca Piemonte, Marasca Savena and Morello, Dutch with Noble (S 6 S 13 ) showed that these three sour cherries have the alleles S 6 and S 13 . S 13 was very frequent in sour cherry cultivars, but is rare in sweet cherry cultivars, whereas with S 3 the situation is reversed. It was suggested that the other four bands are derived from ground cherry and one of these, provisionally attributed to S B , occurred frequently in a small set of ground cherry accessions surveyed. Analysing some progenies from sour by sweet crosses by S allele-specific PCR and monitoring the success of some sweet by sour crosses were informative. They indicated mostly disomic inheritance, with sweet cherry S alleles belonging to one locus and, presumably, the ground cherry alleles to the other, and helped clarify the genomic arrangement of the alleles and the interactions in heteroallelic pollen.Communicated by H.F. Linskens  相似文献   

20.
A potato breeding scheme implies the possibility of ploidy level manipulation either by reducing the chromosome number of cultivars from 48 to 24 to be able to cross them with diploid related species or by doubling diploid material to reach the generally optimal tetraploid level. In vitro spontaneous chromosome doubling is widely used but can lead to somaclonal variation. Since oryzalin has proven to be efficient as a chromosome doubling agent on potato cell suspension cultures, we tried this herbicide on various Solanum species and interspecific diploid hybrids. A 24 h dip in a 28.8 M aqueous oryzalin solution applied on apical buds was the most efficient treatment in terms of tetraploid plant production (mean = 4.1 tetraploid plants for 10 treated buds over 4 genotypes). However 50–100% of the regenerated tetraploid plants acclimatized after in vitro treatment proved to be chimaeric. Consequently, a selection procedure in the progeny was necessary to obtain real and stable doubled clones and final yields were low. This technique is easy to apply and could be a good alternative to chromosome doubling by spontaneous in vitro regeneration in the case of refractory genotypes especially where somaclonal variation is problematic. Percentage of tetraploids among the regenerated plants varied from 6 to 29% with the oryzalin doubling technique while it varied from 20 to 78% by in vitro spontaneous doubling for five diploid genotypes. An observation of the progeny indicated that chimaeras were more frequent using oryzalin (50–100% of the initially supposed tetraploid plants) than when chromosomes doubled spontaneously (4–67% of the initially supposed tetraploid plants).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号