首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify mortality patterns of current-year shoots within the crown of Betula maximowicziana Regel after severe insect herbivory in central Hokkaido, northern Japan, we investigated the degree of defoliation, pattern of shoot development, shoot mortality, and leaf tissue-water relations. One hundred current-year long shoots growing in a B. maximowicziana plantation were observed for defoliation and mortality in June 2002. An outbreak of herbivorous insects (Caligula japonica and Lymantria dispar praeterea) occurred in the stand in mid-to-late June, and the monitored shoots were defoliated to various degrees. Within 1 month of defoliation, some of the severely defoliated shoots had produced new leaves on short shoots that had emerged from axillary buds. Stepwise logistic regression revealed that the probability that current-year long shoots would put out axillary short shoots with leaves is closely related to the degree of defoliation. To evaluate the water relations of the leaves, we determined pressure–volume curves for the leaves that survived the herbivorous insect outbreak and the new leaves that emerged after defoliation. The water potential at turgor loss (Ψl,tlp) and the osmotic potential at full turgidity (Ψπ,sat) were higher for the new leaves than for the surviving leaves, indicating a lower ability to maintain leaf cell turgor against leaf dehydration in the new leaves. Of the 100 shoots, 13 died after the emergence of new leaves. Stepwise logistic regression revealed that the probability that the long shoots would die generally increased with the emergence of new leaves, with increasing shoot height. This result suggests that the combined effect of the vulnerability of newly emerged leaves and low water availability, associated with higher shoot positions within the crown, caused shoot mortality. Based on our results, some possible mechanisms for mortality in severely defoliated B. maximowicziana are discussed.  相似文献   

2.
Clonal integration and effects of simulated herbivory in old-field perennials   总被引:12,自引:0,他引:12  
Summary We compared the growth, phenology and leaf demography of partly defoliated, connected shoots with that of partly defoliated, severed shoots in four old-field perennials (Solidago canadensis, S. altissima, S. gigantea, Aster lanceolatus) with differing genet architectures (rhizome systems), in a common garden and in the field. Our main hypothesis was that defoliation would have fewer negative effects on shoot performance if shoots were connected than if their rhizomes were severed. Since degree of clonal integration is related to differences in genet architecture, our second hypothesis was that the effects of defoliation would be less pronounced in more integrated than in less integrated clones. Removing about 50% of the total leaf area from shoots had different effects depending on plant species, shoot density, and in particular whether rhizome connections between shoots were left intact or severed. In agreement with our prediction, experimentally isolated shoots in the field or in high density clumps in the garden suffered the most from defoliation, while shoots with intact connections or in low density clumps suffered the least. Our second prediction was neither confirmed nor falsified in the present study. Solidago altissima showed overcompensation in response to simulated herbivory in the common garden, i.e. defoliated shoots grew faster and were larger at harvest than their non-defoliated neighbours.  相似文献   

3.
The ability of plants to rapidly replace photosynthetic tissues following defoliation represents a resistance strategy referred to as herbivory tolerance. Rapid reprioritization of carbon allocation to regrowing shoots at the expense of roots following defoliation is a widely documented tolerance mechanism. An experiment was conducted in a controlled environment to test the hypothesis that herbivory-sensitive perennial grasses display less flexibility in reprioritizing carbon allocation in response to defoliation than do grasses possessing greater herbivory tolerance. An equivalent proportion of shoot biomass (60% dry weight) was removed from two C4 perennial grasses recognized as herbivory-sensitive, Andropogon gerardii and Schizachyrium scoparium, and two C4 perennial grasses recognized as herbivory-tolerant, Aristida purpurea and Bouteloua rigidiseta. Both defoliated and undefoliated plants were exposed to 13CO2 for 30 min, five plants per species were harvested at 6, 72 and 168 h following labeling, and biomass was analyzed by isotope ratio mass spectrometry. The tallgrass, A. geraiddii, exhibited inflexible allocation priorities while the shortgrass, B. rigidiseta, exhibited flexible allocation priorities in response to defoliation which corresponded with their initial designations as herbivory-sensitive and herbivory-tolerant species, respectively. A. gerardii had the greatest percentage and concentration of 13C within roots and lowest percentage of 13C within regrowth of the four species evaluated. In contrast, B. rigidiseta had a greater percentage of 13C within regrowth than did A. gerardii, the greatest percentage of 13C within new leaves of defoliated plants, and the lowest concentration of 13C within roots follwing defoliation. Although both midgrasses, S. scoparium and A. purpurea, demonstrated flexible allocation priorities in response to defoliation, they were counter to those stated in the initial hypothesis. The concentration of 13C within new leaves of S. scoparium increased in response to a single defoliation while the percentage and concentration of 13C within roots was reduced. A. purpurea was the only species in which the percentate of 13C within new leaves decreased while the percentage of 13C within roots increased following defoliation. The most plausible alternative hypothesis to explain the inconsistency between the demonstrated responsiveness of allocation priorities to defoliation and the recognized herbivory resistance of S. scoparium and A. purpurea is that the relative ability of these species to avoid herbivory may make an equal or greater contribution to their overall herbivory resistance than does herbivory tolerance. Selective herbivory may contribute to S. scoparium's designation as a herbivorysensitive species even though it possesses flexible allocation priorities in response to defoliation. Alternatively, the recognized herbivory resistance of A. purpurea may be a consequence of infrequent and/or lenient herbivory associated with the expression of avoidance mechanisms, rather than the expression of tolerance mechanisms. A greater understanding of the relative contribution of tolerance and avoidance strategies of herbivory resistance are required to accurately interpret how herbivory influences plant function, competitive interactions, and species abundance in grazed communities.  相似文献   

4.
Efforts to arrest the spread of invasive weeds with herbivory may be hindered by weak effects of the herbivores or strong compensatory responses of the invaders. We conducted a greenhouse experiment to study the effects of defoliation and soil fungi on competition between the invasive weed Centaurea solstitialis and C. solstitialis and Avena barbata, a naturalized Eurasian annual grass, and Nassella pulchra, a native California bunchgrass. Surprisingly, considering the explosive invasion of grasslands by C. solstitialis, Avena and Nassella were strong competitors and reduced the invader’s biomass by 80.2% and 80.1% over all defoliation and soil fungicide treatments, respectively. However, our experiments were conducted in artificial environments where competition was probably accentuated. When fungicide was applied to the soil, the biomass of C. solstitialis was reduced in all treatment combinations, but reduction in the biomass of the invader had no corollary impact on the grasses. There was no overall effect of defoliation on the final biomass of C. solstitialis as the invader compensated fully for severe clipping. In fact, the directional trend of the clipping effect was +6.4% over all treatments after eight weeks. A significant neighbor × soil fungicide × clipping effect suggested that the compensatory response was the strongest without soil fungicide and when C. solstitialis was alone (+ 19%). Our key finding was that the compensatory response of C. solstitialis in all treatments was associated with an increase in the weed’s negative effects on Nassella and Avena – there was a significant decrease in the total biomass of both grasses and the reproductive biomass of Avena in pots with clipped C. solstitialis. Our results were obtained in controlled conditions that may have been conducive to compensatory growth, but they suggest the existence of mechanisms that may allow C. solstitialis, like other Centaurea species, to resist herbivory.  相似文献   

5.
Summary Continuous axillary shoot proliferation and in vitro flowering were achieved using single node explants from a mature (over 70-yr-old) field clump of Dendrocalamus giganteus (giant bamboo). The shoots proliferated in a basal Murashige and Skoog medium with 6 mgl−1 (26.6 μM) N6-benzyladenine (BA) and 2% sucrose. The rate of shoot proliferation gradually increased to over three-fold before in vitro flowering took place. In vitro flowering was not the expression of a species-specific mechanism believed to occur during gregarious flowering, as the mother clump did not flower. The rate of shoot proliferation decreased at flowering, accompanied by reversion of flowering. The development of axillary meristems into vegetative or generative shoots depended on the level of BA. The possible role of BA, changes in the rate of shoot proliferation decreased at flowering, accompanied by reversion of flowering. The development of axillary meristems into vegetative or generative shoots depended on the level of BA. The possible role of BA, changes in the rate of shoot proliferation leading to build up, and release of stress in relation to flowering and its reversion are discussed.  相似文献   

6.
Woody plant seedling establishment is constrained by herbivory in many semi‐arid savannas. We clipped shoots and cotyledons of three woody species 5‐day (=‘early’) or 28‐day (= ‘late’) post‐emergence to simulate herbivory. Seedlings had shoot apex, one or two cotyledon(s) removed, or were retained intact. Survival rates were ≥80%, ≥40% and ≥20% for Acacia nilotica, Acacia nigrescens and Faidherbia albida respectively. F. albida mobilized stored cotyledon reserves faster and consequently shed the cotyledons earlier than the two Acacia species. Cotyledons were shed off as late as 70 days post‐emergence with 5‐day shedding earlier than 28‐day and cotyledon life‐span decreasing with intensity of defoliation. Shoot apex removal 28‐day resulted in higher compensatory growth than 5‐day in all three species. Cotyledon removal had no effect on shoot length, while shoot apex removal reduced shoot length. In F. albida root growth was stimulated by shoot apex removal. We conclude that potential tolerance to herbivory in terms of seedling survival was of the order A. nilotica > A. nigrescens > F. albida, timing of shoot apex and cotyledon removal influenced seedling growth in terms of biomass and that shoot apex removal stimulated compensatory growth which is critical to seedling survival.  相似文献   

7.
D. C. Hartnett 《Oecologia》1989,80(3):414-420
Summary Responses to defoliation were studied in two tallgrass prairie perennials (Andropogon gerardii and Panicum virgatum) established from seed at three densities. P. virgatum was also grown from transplanted rhizomes of established clones. Plants of both species displayed a continuum of responses to defoliation, from large reductions in biomass, tillering and seed production to significant increases in one or more performance measures. In crowded populations, defoliation shifted plants into subordinate positions within the competitive hierarchy. Plants competing intraspecifically and those that were initially small suffered more from defoliation than either plants grown at low density or those that were larger than their neighbors. At the highest plant density, the effects of defoliation or initial plant size were overshadowed by the effects of crowding. When defoliated and grown at similar densities, P. virgatum and A. gerardii grown from seed showed large reductions in biomass, seed production, and new rhizome production, but established P. virgatum ramets grown from rhizomes showed increases in these performance measures. Thus, herbivory may be particularly detrimental to P. virgatum during juvenile stages before perennating organs have developed. Overcompensation of P. virgatum clones in response to defoliation only occurred if all ramets within the clone were defoliated. In clones containing both defoliated and undamaged ramets, there were no differences in their performance, suggesting that genets are capable of integrating the effects of differential defoliation among shoots. Defoliated P. virgatum clones allocated a smaller fraction of their total biomass to new rhizomes, indicating that the short-term regrowth response following defoliation may incur a longer-term cost associated with gradual reduction in biomass of the perennating organs and reduced genet success.  相似文献   

8.
A laboratory study was conducted to determine the effects of defoliation and denodulation on compensatory growth of Medicago sativa (L.). Plants grown hydroponically in clear plastic growth pouches were subjected to 0 and 50% nodule pruning, and 0, 25, 50, and 75% defoliation by clipping trifoliate leaves. An additional experiment was conducted to determine if clipping leaves simulated herbivory by Hypera postica (Gyllenhal) larvae. Previously, we determined that nodule pruning accurately simulated herbivory by Sitona hispidulus (L.) larvae (Quinn & Hall, 1992). Results indicated that denodulation stimulated nodule growth and caused exact compensation in standing and total number of nodules per plant within 15 days and in standing nodule biomass within 22 days of treatment. Denodulation caused a significant reduction (13%) in final shoot biomass, but did not affect significantly final root biomass. Percentage of change in number of trifoliate leaves per plant increased with the level of defoliation. Within 22 days of treatment, total number of trifoliate leaves per plant was similar to controls. However, final standing shoot biomasses were significantly less that controls, indicating undercompensatory growth. Shoot biomasses of the 25-, 50-, and 75%-defoliated plants were 18, 20, and 36% lower than controls, respectively. Nodule biomass per plant was reduced by 24 and 32% in 50- and 75%-defoliated plants, respectively, but was not affected significantly by 25% defoliation. Root biomass was affected by all levels of defoliation. Clipping trifoliate leaves accurately simulated defoliation by H. postica larvae. Our results indicated that partial defoliation affected shoot, root, and nodule biomass of M. sativa, but that partial denodulation only affected shoot biomass.  相似文献   

9.
Carbon autonomy of current-year shoots in flowering, and of current-year shoots plus 1-year-old shoots (1-year-old shoot system) in fruiting of Siberian alder (Alnus hirsuta var. sibirica) was investigated using a stable isotope of carbon, 13C. The current-year shoot and 1-year-old shoot systems were fed 13CO2 and the atom% excess of 13C in flowers and fruits was determined. The majority of photosynthate allocated to flower buds was originally assimilated in the leaves of the flowering current-year shoots. Of all the current-year shoots on fruiting 1-year-old shoots, only those nearest to the fruits allocated the assimilated photosynthate to fruit maturation. These results indicate that the current-year shoots and 1-year-old shoot systems are carbon-autonomous units for producing flowers and maturing fruits, respectively.  相似文献   

10.
Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into stands of Typha spp. (cattail; Typha australis L. and T. x glauca) is common in the wetlands of northwestern Indiana (USA). To understand this phenomenon better, we investigated the production of shoot sprouts and proportional allocation of biomass as well as a potential role for the water table in the relative dominance of each species. The reduction in sprouts from rhizomes upon vegetative expansion of Phragmites appeared to be the most likely process causing the decline of Typha. The latter had a shoot density of 39/m2 in plots without Phragmites, but this dropped to 13 shoots m−2 in plots that had been invaded by Phramites. Such a decline was likely caused by reduced reserves; e.g., the belowground biomass of Typha decreased from 11.3 g m−2 without Phragmites to 8.1 g m−2 with Phragmites. The latter also reduced its belowground biomass but not its shoot density in the presence of Typha. The mean weight of Phragmites shoots was 2.9 g, and nearly all produced inflorescences. Meanwhile, Typha failed to develop spadices despite its shoots having a greater biomass (7 g). This suggests that Phragmites is more efficient than Typha in shoot growth. Springtime flooding appeared to promote the sprout of Typha shoots from shallow rhizomes (≈18 cm below the soil surface), whereas the shoot density of Phragmites showed no correlation with water level in that season. Deep-rooted Phragmites (≈39 cm) occurred on both high and low water-table sites, whereas the shallow-rooted Typha was limited to only the former. Phragmites will likely continue its expansion, by vegetative sprouts from rhizomes, into Typha wetlands.  相似文献   

11.
Vegetative and chemical responses to simulated leaf browsing during the growth season, and their subsequent effect on herbivory, were studied on Combretum apiculatum Sonder (Combretaceae) in Botswana. Treatments (50% and 100% leaf and shoot apex removal) were performed just before the shoot growth curve levelled out, and responses recorded 3 months later, just before leaf fall. Compared to controls, defoliation treatments, removing apical dominance, reduced growth in tree height and increased shoot mortality, although the production of lateral shoots increased. At the end of the trial, there was no difference in total length of annual shoots between treatment groups. Significant refoliation occurred only after 100% defoliation. Refoliated leaves were smaller and the 100% defoliated trees had a lower final leaf biomass. Total leaf biomass production was, however, equal for all treatment groups. Refoliated leaves contained higher levels of N, lower levels of acid-detergent fibre (ADF) and total phenolics, and showed a trend towards lower levels of condensed tannins, compared to leaves on control trees. Such chemical changes may be due to either carbon stress or to younger physiological age of new leaves. In spite of the observed potential increase in food quality, we found no evidence of increased levels of insect or ungulate herbivory on refoliated leaves, which, at least for insect herbivory, may be explained by the reduction in temporal availability of leaves. We conclude that the single severe defoliation was not detrimental to C. apiculatum in the short-term, although the resource loss and induced compensatory growth may produce negative effects during subsequent growth seasons.  相似文献   

12.
Summary Two perennial tussock grasses of savannas were compared in a glasshouse study to determine why they differed in their ability to withstand frequent, heavy grazing; Cenchrus ciliaris is tolerant and Themeda triandra is intolerant of heavy grazing. Frequent defoliation at weekly intervals for six weeks reduced shoot biomass production over a subsequent 42 day regrowth period compared with previously undefoliated plants (infrequent) in T. triandra, but not in C. ciliaris. Leaf area of T. triandra expanded rapidly following defoliation but high initial relative growth rates of shoots were not sustained after 14 days of regrowth because of reducing light utilising efficiency of leaves. Frequently defoliated plants were slower in rate of leaf area expansion and this was associated with reduced photosynthetic capacity of newly formed leaves, lower allocation of photosynthate to leaves but not lower tiller numbers. T. triandra appears well adapted to a regime where defoliation is sufficiently infrequent to allow carbon to be fixed to replace that used in initial leaf area expansion. In contrast, C. ciliaris is better adapted to frequent defoliation than is T. triandra, because horizontally orientated nodal tillers are produced below the defoliation level. This morphological adaptation resulted in a 10-fold higher leaf area remaining after defoliation compared with similarly defoliated T. triandra, which together with the maintenance of moderate levels of light utilising efficiency, contributed to the higher leaf area and shoot weight throughout the regrowth period.  相似文献   

13.
Leymus chinensis (Trin.) Tzvel. is a perennial species of Gramineae, usually subject to defoliation from grazing and mowing. We examined whether shoot defoliation and rhizome severing affected rhizome and ramet growth, and vegetative bud outgrowth of Lchinensis ramet populations. We also tested the hypothesis that clonal growth of the ramets subject to defoliation would benefit from clonal integration between interconnected ramets besides from possible compensatory growth. To 48 experimental plots, we applied six treatments resulting from interactions between two rhizome connection states (unsevered/severed) and three defoliation regimes (non-defoliated, mildly-defoliated and heavily-defoliated). Defoliation affected rhizome growth and bud outgrowth, but had little effect on shoot growth. Mild and heavy defoliation exerted similar effects on rhizome growth. Only heavy defoliation significantly reduced bud outgrowth while mild defoliation did not. The fact that shoot growth did not change after defoliation and that the bud numbers remained unchanged after mild defoliation suggest that the compensatory response enable the species to tolerate grazing to some extent. Neither rhizome severing nor the interaction of rhizome severing and defoliation had effect on any tested variables. Lack of the effect of rhizome severing falsified the first half of our hypothesis, that is, clonal integration was unimportant in our experiment. The probable reasons were suspected to be the short duration of the experiment and/or the buffer effect of carbohydrate reserves in rhizomes for shoot growth and bud production in time of defoliation.  相似文献   

14.
A dynamic model of regrowth in Typha angustifolia after cutting shoots above the water surface was formulated by characterizing the phenology and mobilization of resources from below-ground to above-ground organs after the cutting. The model parameters were determined by two cutting experiments to investigate the different strategies with flowering and non-flowering shoots after cutting in 2001 and by four cutting experiments to elucidate the regrowth characteristics after cutting on different days from June to September in 2002. A difference was evident both for flowering and non-flowering shoots and for each cutting day. From June to August, non-flowering shoots regrew immediately after cutting, but flowering shoots did not. The shoot regrowth height, number of leaves and shoot biomass were higher with the earlier cutting. The model was validated using the below-ground biomass observed in December 2002 and below-ground dynamics observed in 2003. In the low-flowering shoot zone of the stands, in which the percentage of flowering shoots was small (around 10%), the decrease in below-ground biomass became larger from June (20%) to August (60%). Cutting the high-flowering shoot zone (flowering shoots: 78%) in July 2001, just 1 week after peduncle formation, decreased the below-ground biomass by about 50%. In the low-flowering shoot zone, cutting just before senescence is better for decreasing below-ground biomass with a smaller rate of flowering shoots. The difference of below-ground biomass reduction in non-flowering shoots is mainly due to the decrease in downward translocation (DWT) of above-ground material to below-ground organs during senescence, because of the decrease in regrowth biomass. As for flowering shoots, the decrease in the photosynthate transportation from above-ground to below-ground organs and that of DWT are closely related because they cannot grow again within the season.  相似文献   

15.
In vitro grown inflorescences of Bambusa edulis were used to investigate the process of vegetative shoot growth in detail. The findings revealed that auxins and ACC could be significant growth regulators in this process. Overall, auxins [NAA, indolebutyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)] induced inflorescences to grow vegetative shoots. However, the efficiency of shoot regeneration varied. A greater percentage (27.3–34.5) of inflorescences in the 5 mg l−1 NAA, 10 mg l−1 NAA, and 1 mg l−1 2,4-D treatments formed more vegetative shoots than those exposed to other treatments. IBA promoted shoot regeneration less effectively than NAA and 2,4-D. Fifty percent of regenerated vegetative shoots flowered after 2 months when the medium was supplemented with 5 mg l−1 NAA. All shoots that received 1 mg l−1 1-amino-cyclopropane-1-carboxylic acid (ACC) flowered in 5 mg l−1 NAA medium. Rooted plantlets were used to examine their survival following in vitro flowering. All plantlets with vegetative shoots, even those with inflorescences, survived and grew.  相似文献   

16.
Summary Nitrogen partitioning among three generations of tillers within the bunchgrass Schizachyrium scoparium var. frequens was investigated in a controlled environment as a potential mechanism of herbivory tolerance. Nitrogen-15 was transported from the labelled primary tiller generation to both shoots and roots of nondefoliated secondary and tertiary tiller generations within 24 h. Partial defoliation increased shoot nitrogen concentration of secondary and tertiary generation tillers by 110 and 120%, respectively, 24 h following defoliation. Shoot nitrogen concentration was preferentially increased by partial defoliation of tertiary generation tillers throughout the 120 h experimental period, but diminished to concentrations comparable to nondefoliated tillers within shoots of the secondary generation at 72 h. In contrast to nitrogen concentration, the total amount of nitrogen imported by secondary and tertiary generation tillers decreased 62 and 73%, respectively, 24 h following partial defoliation and did not attain values comparable to respective nondefoliated tillers. Consequently, preferential nitrogen concentration occurred in response to partial tiller defoliation without an increase in total nitrogen import based on the reduction in the total nitrogen requirement per tiller generation associated with defoliation. Estimates of both the total amount of nitrogen import and nitrogen concentration are necessary to accurately interpret the dynamics of intertiller nitrogen allocation.  相似文献   

17.
Summary Regeneration of adventitious shoots from the medicinal plant Nothapodytes foetida (Weight) Sleumer Syn. Mappia foetida (family Ieacinaceceae) has been achieved using different seedling explants. Direct, regeneration of shoot buds was observed in Murashige and Skoog's (MS) basal medium supplemented with various concentrations of thidiazuron. The optimum levels of thidiazuron concentrations were 0.91–4.45 μM. Leaf explants formed more shoots followed by hypocotyls or cotyledons. The shoot buds elongated and rooted on MS basal medium with N6-benzyladenine (0.88–2.22 μM) and indole-3-butyric acid (0.49 μM).  相似文献   

18.
Summary The evergreen tussock-forming Eriophorum vaginatum revealed consistently earlier (c. 1 moth) phenology and greater biomass per tiller than the summergreen rhizomatous E. scheuchzeri in all four components measured (vegetative and reproductive shoots and stems) under the same climatic regime in central Alaska over one growing season. Greatest allocation to vegetative shoot growth occurred in mid-summer in both species. The tussock growth form of E. vaginatum raised shoot meristems 25–30 cm above the soil surface, where temperatures were warmer, permitting shoot growth to begin earlier in spring and continue longer in autumn than in E. scheuchzeri. Consequently, E. vaginatum was able to allocate reserves to reproductive tillers primarily in autumn and early spring, times when minimal reserves were required for vegetative growth. By contrast, the rhizomatous E. scheuchzeri had a more constrained growing season, and allocation to reproduction coincided with allocation to vegetative growth. For this reason, reserves were drawn down more fully in mid-summer in E. scheuchzeri than in E. vaginatum. The more conservative use of nutrient stores in E. vaginatum may relate to its great longevity, reduced allocation to reproduction (including low seedling recruitment), and relatively stable habitats. The mid-seasonal pulse of allocation to reproduction in E. scheuchzeri appears viable only in relatively fertile disturbed sites, where the soil nutrient supply is sufficient to support simultaneous allocation to vegetative growth and reproduction.  相似文献   

19.
Herbivory often alters the growth and development of woody plants and can thereby render hosts less susceptible to subsequent herbivores. We carried out field surveys and experiments to investigate how previous herbivory influences adult egg lay, larval feeding preference, and associated survival of the yellowheaded spruce sawfly, Pikonema alaskensis (Rohwer) (Hymenoptera: Tenthredinidae), within crowns of black spruce, Picea mariana (Mill.) Britton et al. (Pinaceae). Pikonema alaskensis females laid nearly twice as many eggs, and late‐instar larvae consumed nearly twice as much foliar biomass, on undefoliated vs. defoliated branches. The major factor driving the lower incidence of egg lay on defoliated branches was a significant reduction in the availability of preferred size classes of shoots. In general, adult females preferred medium‐sized shoots, whereas late instars preferred large shoots; previous defoliation generally decreased the availability of medium and large shoots. In a field bioassay, late‐instar survival generally declined with increasing defoliation, which again corresponded to significant reductions in shoot length on defoliated branches. The tendency of P. alaskensis to avoid shoots on severely defoliated branches is likely to increase the time lag between herbivory and the feedback effects of induction and could thus contribute to fluctuations in sawfly population density during outbreak. Our results differ from numerous past studies of closely related diprionid sawflies in conifers, most of which have reported weak or positive effects of previous herbivory on host susceptibility; we attribute the observed responses of spruce to the unusual sawfly feeding preference of P. alaskensis for developing conifer foliage.  相似文献   

20.
Summary Nothapodytes foetida (Wight) is a small evergreen tree and the extract from this tree is used to make the antileukaemia and antitumoral compound camptothecin. Due to exploitation of this resource, efficient methods for rapid propagation of N. foetida are highly desirable. Multiple shoots were induced on hypocotyl segments of 20–25-d-old seedlings of N. foetida cultured on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of cytokinins. The highest shoot multiplication was achieved on MS medium containing thidiazuron (TDZ) at the concentration of 2.2 μM. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to medium containing 2.2 μM benzylaminopurine which produced healthy shoots after three additional subcultures. The production of shoots was further promoted by repeated subculturing of original explants on fresh multiplication medium after each harvesting of the newly formed shoots. In vitro rooting was best induced (87%) in shoots excised from proliferated shoot cultures on one-fourth MS medium augmented with 5.7 μM indole-3-acetic acid and 2.4 μM indolebutryic acid (IBA). In vitro-developed shoots were also rooted ex vitro by dipping in 49 μM IBA for 10 min. In vitro- and ex vitro-rooted plants were successfully acclimatized and established in greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号