首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim MJ  Kim HK 《Life sciences》2006,79(24):2288-2292
Oxidative stress is produced under diabetic conditions and is likely involved in progression of pancreatic beta-cell dysfunction found in diabetes. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in two different diabetic animal models. The genetically diabetic mouse strain C57BL/6J-db/db (db/db) and streptozotocin (STZ)-induced diabetic mouse were used as insulin deficient type 1 and insulin resistant type 2 animal model, respectively. ERW, provided as a drinking water, significantly reduced the blood glucose concentration and improved glucose tolerance in both animal models. However, ERW fail to affect blood insulin levels in STZ-diabetic mice whereas blood insulin level was markedly increased in genetically diabetic db/db mice. This improved blood glucose control could result from enhanced insulin sensitivity, as well as increased insulin release. The present data suggest that ERW may function as an orally effective anti-diabetic agent and merit further studies on its precise mechanism.  相似文献   

2.
Oxidative stress and diabetic cardiovascular complications   总被引:6,自引:0,他引:6  
Diabetes diagnoses are increasing at an alarming rate worldwide. The majority of diabetes-related deaths arise from cardiovascular complications such as myocardial infarction, stroke, and peripheral vascular disease. Oxidative stress has been demonstrated to be present in animal models as well as in patients with diabetes and has been suggested as a possible contributor to the accelerated atherosclerosis seen in diabetics. The generation of reactive oxygen species in diabetes occurs via several mechanisms and is initiated not only by glucose, but also by other substances that are found at elevated levels in diabetic patients. The resulting oxidative stress leads to a number of proatherogenic events. The elucidation of the mechanisms of oxidative stress in diabetes and their relationship with atherosclerosis could potentially identify molecular targets of therapy for this condition and its cardiovascular consequences.  相似文献   

3.
衰老是阿尔茨海默病(Alzheimer’s disease,AD)等神经退行性疾病的主要危险因素。氧化应激和自由基具有重要的生物学功能,氧化还原失衡导致氧化应激,与包括AD在内的许多人类疾病的病理生理有关。本文综述了活性氧(ROS)参与神经退行性疾病发病的相关机制,特别是氧化应激与AD其他关键机制的相互作用,并总结了茶多酚、L-茶氨酸、虾青素、EGb761、大豆异黄酮和烟碱在细胞和动物模型中对AD的防护作用以及在临床上对相关疾病的缓解作用。希望该综述能为AD的预防和治疗策略提供一些见解。  相似文献   

4.
Modeling oxidative stress in the central nervous system   总被引:2,自引:0,他引:2  
Oxidative stress is associated with the onset and pathogenesis of several prominent central nervous system disorders. Consequently, there is a pressing need for experimental methods for studying neuronal responses to oxidative stress. A number of techniques for modeling oxidative stress have been developed, including the use of inhibitors of the mitochondrial respiratory chain, depletion of endogenous antioxidants, application of products of lipid peroxidation, use of heavy metals, and models of ischemic brain injury. These experimental approaches can be applied from cell culture to in vivo animal models. Their use has provided insight into the molecular underpinnings of oxidative stress responses in the nervous system, including cell recovery and cell death. Reactive oxygen species contribute to conformational change-induced activation of signaling pathways, inactivation of enzymes through modification of catalytic cysteine residues, and subcellular redistribution of signaling molecules. In this review, we will discuss several methods for inducing oxidative stress in the nervous system and explore newly emerging concepts in oxidative stress signaling.  相似文献   

5.
The tripeptide glutathione (GSH) is part of an integrated antioxidant system that protects cells and tissues from oxidative damage. Oxidative stress can result from exposure to excessive amounts of endogenous and exogenous electrophiles. Until recently, animal and cell model systems used to investigate the role of GSH in disease processes had employed chemical agents that deplete cellular GSH by inhibiting GSH synthesis or by reacting chemically with GSH. Such models have proven useful, but questions concerning nonspecific effects of such chemicals remain. Recently, our laboratories and others have developed mouse models with genetic deficiencies in enzymes of the GSH biosynthetic pathway. This review focuses on the regulation of GSH homeostasis and, specifically, the new GSH-deficient mouse models that have been developed. These models will improve our understanding of the role of GSH in animal and human diseases.  相似文献   

6.
Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels. Oxidative stress can arise from a number of different sources, whether disease state or lifestyle, including episodes of ketosis, sleep restriction, and excessive nutrient intake. Oxidative stress activates a series of stress pathways involving a family of serine/threonine kinases, which in turn have a negative effect on insulin signaling. More experimental evidence is needed to pinpoint the mechanisms contributing to insulin resistance in both type 1 diabetics and nondiabetic individuals. Oxidative stress can be reduced by controlling hyperglycemia and calorie intake. Overall, this review outlines various mechanisms that lead to the development of oxidative stress. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the risk of insulin resistance and the development of diabetes.  相似文献   

7.
M.W. Anders 《Mitochondrion》2013,13(5):454-463
Oxidative stress plays a role in a range of human disease entities. Hence, strategies to target antioxidants to mitochondria are an active area of investigation. Triphenylphosphonium cation-based antioxidants and SS-peptides have been described and show significant uptake by mitochondria and effectiveness in animal models of conditions linked to oxidative stress. We tested the hypothesis that the mitochondrial β-oxidation pathway could be exploited to activate the antioxidant phenolic and methimazole prodrugs. Most compounds studied underwent mitochondrial biotransformation to release their antioxidant moieties, and some were cytoprotective in a hypoxia–reoxygenation model in rat cardiomyocytes. These results demonstrate the feasibility of exploiting mitochondrial bioactivation reactions for targeted drug delivery.  相似文献   

8.
NF-E2相关因子2(nuclear erythroid 2-related factor 2,Nrf2)是一种能调节肝脏中大量解毒和抗氧化防御基因表达的重要转录因子.氧化应激与各种形式的肝损伤有密切的关系.Nrf2由亲电体压力或氧化应激激活,并通过结合抗氧化反应元件(antioxidant response element,ARE)诱导其靶基因,从而对细胞产生保护作用.因此,Nrf2通路在肝脏疾病中的作用已被深入研究.多种动物模型研究结果表明,Nrf2通路通过靶基因表达,在对抗病毒性肝炎、药物性肝损伤、酒精性肝病、非酒精性脂肪肝及肝癌方面表现出了不同的生物功能.根据Nrf2及其信号通路在对抗肝损伤中产生保护作用的相关文献,本文综述并讨论了其作为治疗肝损伤的药物作用靶点方面可能的应用前景.  相似文献   

9.
Oxidative stress has long been associated with aging and has recently been linked to psychiatric disorders, including psychosis and depression. We identified multiple antipsychotics and antidepressants that extend Caenorhabditis elegans lifespan and protect the animal from oxidative stress. Here, we report that atypical antidepressants activate a neuronal mechanism that regulates the response to oxidative stress throughout the animal. While the activation of the oxidative stress response by atypical antidepressants depends on synaptic transmission, the activation by reactive oxygen species does not. Lifespan extension by atypical antidepressants depends on the neuronal oxidative stress response activation mechanism. Neuronal regulation of the oxidative stress response is likely to have evolved as a survival mechanism to protect the organism from oxidative stress, upon detection of adverse or dangerous conditions by the nervous system.  相似文献   

10.
Literature data on the role of oxidative stress in aging have been summarized. There are certain links between parameters of free radical processes (intensity of generation of reactive oxygen species in mitochondria, oxidative modification of mitochondrial DNA, activity of desaturases, involved into biosynthesis of polyunsaturated C20 and C22 fatty acids) with life span. The review highlights the role of oxidative stress as on of pathogenic factors of numerous diseases including various neurodegenerative disorders. Special attention is paid to oxidative modification of proteins as one of early and reliable markers of tissue injury in free radical pathology. Oxidative destruction of proteins plays a major role in etiology of such neurodegenerative diseases as Alzheimer’s and Parkinson’s diseases. Oxidative stress and the stress related protein aggregation are considered as the pathogenic link in the development of familiar amyotrophic lateral sclerosis. Oxidative modification of proteins is associated with the development of cataract. The age-and pathology-related increases in the content of oxidized proteins in tissues is assessed as an early and specific parameter of oxidative stress.  相似文献   

11.
Oxidative stress-induced neuronal death due to hydrogen peroxide overload plays a critical role in the pathogenesis of numerous neurological diseases. Insulin-like growth factor-1 (IGF-1) is important in maintaining neuronal survival, proliferation, and differentiation in the central nervous system. We now report that sublethal doses of hydrogen peroxide attenuated IGF-1 neuroprotective activity on cultured cerebellar granule neurons under potassium and serum deprivation. Interestingly, this attenuation can be prevented by minocycline, an antibiotic that has been shown to have neuroprotective activity in animal models of neuronal injury. Furthermore, hydrogen peroxide also blocked IGF-1's neuroprotection for cortical neurons deprived of neurotrophic factors (B27), which was prevented by minocycline. Our data suggest that inhibition of IGF-1 signaling by hydrogen peroxide may constitute an additional pathway contributing to its neurotoxicity. More importantly, combining minocycline and IGF-1 could be an effective treatment in neurological diseases associated with both oxidative stress and deficiency of IGF-1.  相似文献   

12.
Plant polyphenols are dietary components that exert a variety of biochemical and pharmacological effects. Recently, considerable interest has been focused on polyphenols because of their antioxidant, anti-inflammatory, and antiproliferative activities. Oxidative stress is thought to be a key event in the pathogenesis of cerebral ischemia. Overproduction of reactive oxygen species during ischemia/reperfusion could cause an imbalance between oxidative and antioxidative processes. Reactive oxygen species can damage lipids, proteins, and nucleic acids, thereby inducing apoptosis or necrosis. There is increasing evidence supporting the hypothesis that plant polyphenols can provide protection against neurodegenerative changes associated with cerebral ischemia. This article reviews the neuroprotective effects of plant extracts and their constituents that have been used in animal models of cerebral ischemia. The use of polyphenols as therapeutic agents in stroke has been suggested.  相似文献   

13.
Oxidative stress results from a mismatch between production of reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects by building up sufficient antioxidant protection and/or repair mechanisms. Because ROS production is a universal consequence of cellular metabolism and immune responses, evolutionary animal ecologists have become increasingly interested in involvement of oxidative stress as a proximate mechanism responsible for the emergence of trade-offs related to the evolution of life-history and signal traits. Among the most practical problems pertinent to ecological research on oxidative stress is finding a combination of biomarkers of oxidative status that can be applied to typical wild animal models such as small birds, mammals, and reptiles. This study describes covariation and individual consistency of eight parameters of oxidative status in a small passerine bird, wild-caught captive greenfinch (Carduelis chloris). We measured two markers of plasma antioxidant potential--total antioxidant capacity (TAC) and oxygen radical absorbance (OXY)--and concentrations of one lipophilic (carotenoids) and two hydrophilic (uric acid and ascorbate) antioxidants in plasma. We also measured total glutathione (GSH) concentration and superoxide dismutase (SOD) activity in erythrocytes. Oxidative damage was assessed on the basis of plasma malondialdehyde (MDA) levels, measured by high-performance liquid chromatography. Plasma carotenoids, TAC, and erythrocyte GSH showed significant individual consistency over an 8-d period, indicating that those variables reflected more persistent differences between individuals than plasma OXY, MDA, and uric acid. We did not detect any strong or moderate correlations between the studied parameters, which suggests that all of these biomarkers contain potentially unique information. Injection of a synthetic mimetic of SOD and catalase--EUK-134--did not affect any of the parameters of oxidative status. Capability of phagocytes to produce oxidative burst was not associated with MDA, indicating that under our experimental conditions, ROS production by phagocytes was not a strong determinant of oxidative damage. Altogether these findings suggest that attempts to characterize oxidative balance should use a wide range of biomarkers, and further studies of oxidative status in wild animals may benefit from the experimental induction of oxidative stress.  相似文献   

14.
BackgroundAcute kidney injury (AKI) is a common disease that can develop into end-stage kidney disease. Sepsis is one of the main causes of AKI. Currently, there is no satisfactory way to treat septic AKI. Therefore, we have shown the protective function of Cul4a in septic AKI and its molecular mechanism.MethodsThe cellular and animal models of septic AKI were established by using lipopolysaccharide (LPS). Western blot (WB) was employed to analyze Cul4a expression. RT-qPCR was employed to test the expression of Cul4a, SOD1, SOD2, GPX1, CAT, IL-6, TNF-a, Bcl-2, IL1b, Bax and KIM-1 mRNA. ELISA was performed to detect the contents of inflammatory factors and LDH. CCK-8 was utilized to detect cell viability. Flow cytometry was utilized to analyze the apoptosis. DHE-ROS kit was used to detect the content of ROS.ResultsCul4a was down-regulated in cellular and animal models of septic AKI. Oxidative stress is obviously induced by LPS, as well as apoptosis and inflammation. However, these can be significantly inhibited by up-regulating Cul4a. Moreover, LPS induced the activation of the NF-kB pathway, which could also be inhibited by overexpression of Cul4a.ConclusionsCul4awas found to be a protective factor in septic AKI, which could inhibit LPS-induced oxidative stress, apoptosis and inflammation of HK-2 cells by inhibiting the NF-kB pathway.  相似文献   

15.
The concept of trade-offs is central to our understanding of life-history evolution. The underlying mechanisms, however, have been little studied. Oxidative stress results from a mismatch between the production of damaging reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects. Managing oxidative stress is likely to be a major determinant of life histories, as virtually all activities generate ROS. There is a recent burgeoning of interest in how oxidative stress is related to different components of animal performance. The emphasis to date has been on immediate or short-term effects, but there is an increasing realization that oxidative stress will influence life histories over longer time scales. The concept of oxidative stress is currently used somewhat loosely by many ecologists, and the erroneous assumption often made that dietary antioxidants are necessarily the major line of defence against ROS-induced damage. We summarize current knowledge on how oxidative stress occurs and the different methods for measuring it, and highlight where ecologists can be too simplistic in their approach. We critically review the potential role of oxidative stress in mediating life-history trade-offs, and present a framework for formulating appropriate hypotheses and guiding experimental design. We indicate throughout potentially fruitful areas for further research.  相似文献   

16.
Oxidative stress (OS) may pose important physiological constraints on individuals, affecting trade-offs between growth and reproduction or ageing and survival. Despite such evolutionary and ecological importance, the results from studies on the magnitude of individual variation in OS resistance and the underlying causes of this variation such as genetic, environmental, and maternal origins, remain inconclusive. Using a high throughput methodology, we investigated the activity levels in three OS resistance-related enzymes (superoxide dismutase, SOD; glutathione reductase, GR; glutathione S-transferase, GST) during the early life stages of 1000 individuals from 50 paternal half-sib families in two populations of Atlantic salmon. Using animal mixed models, we detected the presence of narrow-sense heritability for SOD and GST; that for GST differed between populations due to differences in environmental variance. We found support for the presence of common environmental variation, including maternal effects, for only GR. Using a bivariate animal model, we detected a positive environmental correlation between activity levels of SOD and GST but were unable to detect an additive genetic correlation. Our results complement previous heritability findings for levels of reactive oxygen species or OS resistance by demonstrating the presence of heritability for OS-related enzyme activities. Our findings provide a foundation for future work, such as investigations on the evolutionary importance of variation in enzyme activities. In addition, our findings emphasise the importance of accounting for developmental stage, environmental variance, and kin relationships when investigating the OS-response at the enzyme activity level.  相似文献   

17.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.  相似文献   

18.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

19.
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.  相似文献   

20.
Oxidative stress (OS) and nitrative stress (NS) accompany many diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Antioxidants have been proposed to counteract OS/NS in these diseases. Nevertheless, the effects of antioxidants are limited and new, more efficient antioxidants are searched for. Redox-active nanoparticles (RNPs), containing antioxidants create a new therapeutical perspective. This review examines the recent literature describing synthesis and potential applications of cerium oxide RNPs, boron cluster-containing and silica containing RNPs, Gd3N@C80 encapsulated RNPs, and concentrates on nitroxide-containing RNPs. Nitroxides are promising antioxidants, preventing inter alia glycation and nitration, but their application poses several problems. It can be expected that application of RNPs containing covalently bound nitroxides, showing low toxicity and able to penetrate the blood–brain barrier will be more efficient in the treatment of neurodegenerative disease, in particular AD and PD basing on their effects in cellular and animal models of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号