首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This paper discusses the link between pharmacogenetics and race, and the global justice issues that the introduction of pharmacogenetics in pharmaceutical research and clinical practice will raise. First, it briefly outlines the likely impact of pharmacogenetics on pharmaceutical research and clinical practice within the next five to ten years and then explores the link between pharmacogenetic traits and ‘race’. It is shown that any link between apparent race and pharmacogenetics is problematic and that race cannot be used as a proxy for pharmacogenetic knowledge. The final section considers the implications of the development of pharmacogenetics for health care systems in low‐ and middle‐income countries.  相似文献   

2.
The purpose of the present survey is to describe the Danish perspective on pharmacogenetics and public willingness to adopt and utilize it as part of drug treatment. An Internet-based quantitative survey of a representative segment of the Danish population from ages 18 to 70 was conducted in March 2005. A total of 3,000 participated in the survey, with a response rate of 59%. Only 14.1% of respondents indicated they had heard of pharmacogenetics, while 79% said they had not. However, 81% indicated that they would choose pharmacogenetic drugs rather than ordinary drugs, while 6% would choose the drugs currently available. In addition, 89% indicated willingness to receive pharmacogenetic treatment in future. The population in general has a low level of knowledge about pharmacogenetics, and certain aspects are seen as disadvantageous: the lack of drug treatment for everyone, for example. Nonetheless, the attitude towards the use of pharmacogenetics is generally positive, and pharmacogenetic treatment is considered better than the treatment available at present.  相似文献   

3.
With the completion of the Human Genome Project, a new emphasis is focusing on the sequence variation and the resulting phenotype. The number of data available from genomic studies addressing this relationship is rapidly growing. In order to analyze these data as a whole, they need to be integrated, aggregated and annotated in a timely manner. The Pharmacogenetics and Pharmacogenomics Knowledge Base PharmGKB; () assembles and disseminates these data and their associated metadata that are needed for unambiguous identification and replication. Assembling these data in a timely manner is challenging, and the scalability of these data produce major challenges for a knowledge base such as PharmGKB. However, it is only through rapid global meta-annotation of these data that we will understand the relationship between specific genotype(s) and the related phenotype. PharmGKB has confronted these challenges, and these experiences and solutions can benefit all genome communities.  相似文献   

4.
Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels-the two components of the dose-response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose-response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose-response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose-response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as result in complex prescribing information. Genotype-specific dosing regimens will have to be more precise and marketing strategies more prudent. However, not all variations in drug responses are related to pharmacogenetic polymorphisms. Drug response can be modulated by a number of non-genetic factors, especially co-medications and presence of concurrent diseases. Inappropriate prescribing frequently compounds the complexity introduced by these two important non-genetic factors. Unless prescribers adhere to the prescribing information, much of the benefits of pharmacogenetics will be squandered. Discovering highly predictive genotype-phenotype associations during drug development and demonstrating their clinical validity and utility in well-designed prospective clinical trials will no doubt better define the role of pharmacogenetics in future clinical practice. In the meantime, prescribing should comply with the information provided while pharmacogenetic research is deservedly supported by all concerned but without unrealistic expectations.  相似文献   

5.
Many anticipate that expanding knowledge of genetic variations associated with disease risk and medication response will revolutionize clinical medicine, making possible genetically based Personalized Medicine where health care can be tailored to individuals, based on their genome scans. Pharmacogenetics has received especially strong interest, with many pharmaceutical developers avidly working to identify genetic variations associated with individual differences in drug response. While clinical applications of emerging genetic knowledge are becoming increasingly available, genetic tests for drug selection are not as yet widely accessible, and many primary care clinicians are unprepared to interpret genetic information. We conducted interviews with 58 primary care clinicians, exploring how they integrate emerging pharmacogenetic concepts into their practices. We found that in their current practices, pharmacogenetic innovations have not led to individually tailored treatment, but instead have encouraged use of essentialized racial/ethnic identity as a proxy for genetic heritage. Current manifestations of Personalized Medicine appear to be reinforcing entrenched notions of inherent biological differences between racial groups, and promoting the belief that racial profiling in health care is supported by cutting-edge scientific authority. Our findings raise concern for how pharmacogenetic innovations will actually affect diverse populations, and how unbiased treatment can be assured.  相似文献   

6.
The legacy of pharmacogenetics and potential applications   总被引:3,自引:0,他引:3  
Weber WW 《Mutation research》2001,479(1-2):1-18
Some 40 years of pharmacogenetic research indicates that knowledge of human genetic diversity is essential to a broader understanding of variation in human drug response, and suggests that drug therapy tailored to the genetic characteristics of the individual may be a realistic goal. Aided by new technologies, molecular studies of genetic polymorphisms of many human enzymes, receptors, and other proteins indicate that only a limited number of important protein variants account for the diversity in drug response, raising the prospect that these variants may be cataloged relatively soon for many human populations. The next great challenge of pharmacogenetics is to pin down the cellular location and effect of these variant proteins on the pathways and networks that govern individual variation in responses to drugs and other exogenous chemicals. In this paper, we will discuss some the current challenges to progress in pharmacogenetics and newer strategies that might be used to improve prospects of drug design and personalized therapy.  相似文献   

7.
Arguably, the richest source of knowledge (as opposed to fact and data collections) about biology and biotechnology is captured in natural-language documents such as technical reports, conference proceedings and research articles. The automatic exploitation of this rich knowledge base for decision making, hypothesis management (generation and testing) and knowledge discovery constitutes a formidable challenge. Recently, a set of technologies collectively referred to as knowledge discovery in text (KDT) has been advocated as a promising approach to tackle this challenge. KDT comprises three main tasks: information retrieval, information extraction and text mining. These tasks are the focus of much recent scientific research and many algorithms have been developed and applied to documents and text in biology and biotechnology. This article introduces the basic concepts of KDT, provides an overview of some of these efforts in the field of bioscience and biotechnology, and presents a framework of commonly used techniques for evaluating KDT methods, tools and systems.  相似文献   

8.
9.
Pharmacogenetic tests allow medications to be tailored to individual patients to improve efficacy and reduce drug toxicity. In 2005, the International Society of Pharmacogenomics (ISP) made recommendations for undergraduate medical teaching in pharmacogenetics. We aimed to establish the quantity and scope of this in British medical schools. An electronic survey was sent to all British medical schools. Nineteen out of 34 (56%) medical schools responded. Sixteen of the 19 (84%) respondents provided pharmacogenetics teaching, usually 1–2 h in total. Only four (21%) medical schools offered the four or more hours of teaching recommended by the ISP. However, 10 of 16 (63%) schools felt the amount of pharmacogenetic teaching offered was sufficient. The quantity of undergraduate teaching of pharmacogenetics is low. However, a majority of UK medical schools teach it, covering a broad scope of elements. It is encouraging that future clinicians are being provided with the knowledge to deliver pharmacogenetics into clinical practice.  相似文献   

10.
KEGG: kyoto encyclopedia of genes and genomes   总被引:85,自引:3,他引:82       下载免费PDF全文
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).  相似文献   

11.
Abstract

Arguably, the richest source of knowledge (as opposed to fact and data collections) about biology and biotechnology is captured in natural-language documents such as technical reports, conference proceedings and research articles. The automatic exploitation of this rich knowledge base for decision making, hypothesis management (generation and testing) and knowledge discovery constitutes a formidable challenge. Recently, a set of technologies collectively referred to as knowledge discovery in text (KDT) has been advocated as a promising approach to tackle this challenge. KDT comprises three main tasks: information retrieval, information extraction and text mining. These tasks are the focus of much recent scientific research and many algorithms have been developed and applied to documents and text in biology and biotechnology. This article introduces the basic concepts of KDT, provides an overview of some of these efforts in the field of bioscience and biotechnology, and presents a framework of commonly used techniques for evaluating KDT methods, tools and systems.  相似文献   

12.
Most of the literature on pharmacogenetics assumes that the main problems in implementing the technology will be institutional ones (due to funding or regulation) and that although it involves genetic testing, the ethical issues involved in pharmacogenetics are different from, even less than, 'traditional' genetic testing. Very little attention has been paid to how clinicians will accept this technology, their attitudes towards it and how it will affect clinical practice. This paper presents results from interviews with clinicians who are beginning to use pharmacogenetics and explores how they view the ethics of pharmacogenetic testing, its use to exclude some patients from treatment, and how this kind of testing fits into broader debates around genetics. In particular this paper examines the attitudes of breast cancer and Alzheimer's disease specialists. The results of these interviews will be compared with the picture of pharmacogenetics painted in the published literature, as a way of rooting this somewhat speculative writing in clinical practice.  相似文献   

13.
The dynamic expansion of the taxonomic knowledge base is fundamental to further developments in biotechnology and sustainable conservation strategies. The vast array of software tools for numerical taxonomy and probabilistic identification, in conjunction with automated systems for data generation are allowing the construction of large computerised strain databases. New techniques available for the generation of chemical and molecular data, associated with new software tools for data analysis, are leading to a quantum leap in bacterial systematics. The easy exchange of data through an interactive and highly distributed global computer network, such as the Internet, is facilitating the dissemination of taxonomic data. Relevant information for comparative sequence analysis, ribotyping, protein and DNA electrophoretic pattern analysis is available on-line through computerised networks. Several software packages are available for the analysis of molecular data. Nomenclatural and taxonomic Authority Files are available from different sources together with strain specific information. The increasing availability of public domain software, is leading to the establishment and integration of public domain databases all over the world, and promoting co-operative research projects on a scale never seen before.  相似文献   

14.
This paper describes a publicly available knowledge base ofthe chemical compounds involved in intermediary metabolism.We consider the motivations for constructing a knowledge baseof metabolic compounds, the methodology by which it was constructed,and the information that it currently contains. Currently theknowledge base describes 981 compounds, listing for each: synonymsfor its name, a systematic name, CAS registry number, chemicalformula, molecular weight, chemical structure and two–dimensionaldisplay coordinates for the structure. The Compound KnowledgeBase (CompoundKB) illustrates several methodological principlesthat should guide the development of biological knowledge bases.I argue that biological datasets should be made available inmultiple representations to increase their accessibility toend users, and I present multiple representations of the CompoundKB(knowledge base, relational data base and ASN. 1 representations).I also analyze the general characteristics of these representationsto provide an understanding of their relative advantages anddisadvantages. Another principle is that the error rate of biologicaldata bases should be estimated and documented—this analysisis performed for the CompoundKB.  相似文献   

15.
Bipedal locomotion: toward unified concepts in robotics and neuroscience   总被引:1,自引:0,他引:1  
This review is the result of a joint reflection carried out by researchers in the fields of robotics and automatic control on the one hand and neuroscience on the other, both trying to answer the same question: what are the functional bases of bipedal locomotion and how can they be controlled? The originality of this work is to synthesize the two approaches in order to take advantage of the knowledge concerning the adaptability and reactivity performances of humans and of the rich tools and formal concepts available in biped robotics. Indeed, we claim that the theoretical framework of robotics can enhance our understanding of human postural control by formally expressing the experimental concepts used in neuroscience. Conversely, biological knowledge of human posture and gait can inspire biped robot design and control. Therefore, both neuroscientists and roboticists should find useful information in this paper.  相似文献   

16.
MOTIVATION: Microarray technology makes it possible to measure thousands of variables and to compare their values under hundreds of conditions. Once microarray data are quantified, normalized and classified, the analysis phase is essentially a manual and subjective task based on visual inspection of classes in the light of the vast amount of information available. Currently, data interpretation clearly constitutes the bottleneck of such analyses and there is an obvious need for tools able to fill the gap between data processed with mathematical methods and existing biological knowledge. RESULTS: THEA (Tools for High-throughput Experiments Analysis) is an integrated information processing system allowing convenient handling of data. It allows to automatically annotate data issued from classification systems with selected biological information coming from a knowledge base and to either manually search and browse through these annotations or automatically generate meaningful generalizations according to statistical criteria (data mining). AVAILABILITY: The software is available on the website http://thea.unice.fr/  相似文献   

17.
The molecular probe data base (MPDB) contains detailed information on synthetic oligonucleotides, including their identification, target genes, applications and bibliographic references. It is available on-line through Internet and can be searched by using Network Information Retrieval tools. In this article the most recent enhancements of MPDB, both in terms of data contents and new ways of access, are described. These include a recently established collaboration with EMBL Data Library, in the sphere of SRSWWW network browser, in view of a better integration of MPDB with other molecular biology databases.  相似文献   

18.
19.
MOTIVATION: The living cell is a complex machine that depends on the proper functioning of its numerous parts, including proteins. Understanding protein functions and how they modify and regulate each other is the next great challenge for life-sciences researchers. The collective knowledge about protein functions and pathways is scattered throughout numerous publications in scientific journals. Bringing the relevant information together becomes a bottleneck in a research and discovery process. The volume of such information grows exponentially, which renders manual curation impractical. As a viable alternative, automated literature processing tools could be employed to extract and organize biological data into a knowledge base, making it amenable to computational analysis and data mining. RESULTS: We present MedScan, a completely automated natural language processing-based information extraction system. We have used MedScan to extract 2976 interactions between human proteins from MEDLINE abstracts dated after 1988. The precision of the extracted information was found to be 91%. Comparison with the existing protein interaction databases BIND and DIP revealed that 96% of extracted information is novel. The recall rate of MedScan was found to be 21%. Additional experiments with MedScan suggest that MEDLINE is a unique source of diverse protein function information, which can be extracted in a completely automated way with a reasonably high precision. Further directions of the MedScan technology improvement are discussed. AVAILABILITY: MedScan is available for commercial licensing from Ariadne Genomics, Inc.  相似文献   

20.
Synaptic signaling, memory formation, neuronal development, and neuronal pathology are strongly influenced by the properties of intracellular Ca2+ channels, ryanodine, and inositol 1, 4, 5 trisphosphate receptors. This review will focus on recently developed and discovered pharmacological tools to modulate these channel proteins at the single-channel level. It will allow the readers of Molecular Neurobiology to evaluate the current knowledge on the pharmacological modulation of intracellular Ca2+ channels and to direct future research efforts effectively using available experimental tools and concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号