首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four genes required for selenocysteine incorporation were isolated from the gram-positive, amino acid-fermenting anaerobe Eubacterium acidaminophilum, which expresses various selenoproteins of different functions. The sel genes were located in an unique organization on a continuous fragment of genomic DNA in the order selD1 (selenophosphate synthetase 1), selA (selenocysteine synthase), selB (selenocysteine-specific elongation factor), and selC (selenocysteine-specific tRNA). A second gene copy, encoding selenophosphate synthetase 2 (selD2), was present on a separate fragment of genomic DNA. SelD1 and SelD2 were only 62.9% identical, but the two encoding genes, selD1 and selD2, contained an in-frame UGA codon encoding selenocysteine, which corresponds to Cys-17 of Escherichia coli SelD. The function of selA, selB, and selC from E. acidaminophilum was investigated by complementation of the respective E. coli deletion mutant strains and determined as the benzyl viologen-dependent formate dehydrogenase activity in these strains after anaerobic growth in the presence of formate. selA and selC from E. acidaminophilum were functional and complemented the respective mutant strains to 83% (selA) and 57% (selC) compared to a wild-type strain harboring the same plasmid. Complementation of the E. coli selB mutant was only observed when both selB and selC from E. acidaminophilum were present. Under these conditions, the specific activity of formate dehydrogenase was 55% of that of the wild type. Transformation of this selB mutant with selB alone was not sufficient to restore formate dehydrogenase activity.  相似文献   

2.
Selenophosphate synthetase, the product of the selD gene, produces the highly active selenium donor, monoselenophosphate, from selenide and ATP. Positional isotope exchange experiments have shown hydrolysis of ATP occurs by way of a phosphoryl-enzyme intermediate. Although, mutagenesis studies have demonstrated Cys17 in the Escherichia coli enzyme is essential for catalytic activity the nucleophile in catalysis has not been identified. Recently, selenophosphate synthetase enzymes have been identified from other organisms. The human enzyme which contains a threonine residue corresponding to Cys17 in the E. coli enzyme, has been overexpressed in E. coli. The purified enzyme shows no detectable activity in the in vitro selenophosphate synthetase assay. In contrast, when the human enzyme is expressed to complement a selD mutation in E. coli, in the presence of 75Se, incorporation of 75Se into bacterial selenoproteins is observed. The inactive purified human enzyme together with the very low determined specific activity of the E. coli enzyme (83 nmol/min/mg) suggest an essential component for the formation of selenophosphate has not been identified.  相似文献   

3.
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. It was recently demonstrated that selenium delivered from selenocysteine by an E. coli NifS-like protein could replace free selenide in the in vitro SPS assay for selenophosphate formation (G. M. Lacourciere, H. Mihara, T. Kurihara, N. Esaki, and T. C. Stadtman, J. Biol. Chem. 275:23769-23773, 2000). During growth of E. coli in the presence of 0.1 microM (75)SeO(3)(2-) and increasing amounts of L-selenocysteine, a concomitant decrease in (75)Se incorporation into formate dehydrogenase H and nucleosides of bulk tRNA was observed. This is consistent with the mobilization of selenium from L-selenocysteine in vivo and its use in selenophosphate formation. The ability of E. coli to utilize selenocysteine as a selenium source for selenophosphate biosynthesis in vivo supports the participation of the NifS-like proteins in selenium metabolism.  相似文献   

4.
Biosynthesis of selenocysteine, the 21st proteinogenic amino acid, occurs bound to a dedicated tRNA in all three domains of life, Bacteria, Eukarya and Archaea, but differences exist between the mechanism employed by bacteria and eukaryotes/archaea. The role of selenophosphate and the enzyme providing it, selenophosphate synthetase, in archaeal selenoprotein synthesis was addressed by mutational analysis. Surprisingly, MMP0904, encoding a homologue of eukaryal selenophosphate synthetase in Methanococcus maripaludis S2, could not be deleted unless selD , encoding selenophosphate synthetase of Escherichia coli , was present in trans , demonstrating that the factor is essential for the organism. In contrast, the homologous gene of M. maripaludis JJ could be readily deleted, obviating the strain's ability to synthesize selenoproteins. Complementing with selD restored selenoprotein synthesis, demonstrating that the deleted gene encodes selenophosphate synthetase and that selenophosphate is the in vivo selenium donor for selenoprotein synthesis of this organism. We also showed that this enzyme is a selenoprotein itself and that M. maripaludis contains another, HesB-like selenoprotein previously only predicted from genome analyses. The data highlight the use of genetic methods in archaea for a causal analysis of their physiology and, by comparing two closely related strains of the same species, illustrate the evolution of the selenium-utilizing trait.  相似文献   

5.
Synthesis of a labile selenium donor compound, selenophosphate, from selenide and ATP by the Escherichia coli SELD enzyme was reported previously from this laboratory. From the gene sequence, SELD is a 37-kDa protein that contains 7 cysteine residues, 2 of which are located at positions 17 and 19 in the sequence -Gly-Ala-Cys-Gly-Cys-Lys-Ile- (Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E., and B?ck, A. (1990) Proc. Natl. Acad. Sci. U.S.A. 73, 543-547). Inactivation of the enzyme by alkylation with iodoacetamide indicated that at least 1 cysteine residue in the protein is essential for enzyme activity. To test the possibility that the Cys17 and/or Cys19 residue might be essential, these were changed to serine residues by site-specific mutagenesis. The biological activities of the wild type and mutant proteins were studied using E. coli MB08 (selD-) transformed with plasmids containing the selD genes. The plasmid containing the Cys17-mutated gene failed to complement MB08, whereas the Cys19-mutated gene was indistinguishable from wild type. The mutant proteins, like the wild type enzyme, bound to an ATP-agarose matrix, showing that their affinities for ATP were unimpaired. Selenide-dependent formation of AMP from ATP was abolished by mutation of Cys17, but the Cys19 mutation had no effect on the ability of the enzyme to catalyze the reaction. These results indicate that Cys17 has an essential role in the catalytic process that leads to the formation of selenophosphate from ATP and selenide.  相似文献   

6.
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. Kinetic characterization revealed the K(m) value for selenide approached levels that are toxic to the cell. Our previous demonstration that a Se(0)-generating system consisting of l-selenocysteine and the Azotobacter vinelandii NifS protein can replace selenide for selenophosphate biosynthesis in vitro suggested a mechanism whereby cells can overcome selenide toxicity. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, have been overexpressed and characterized. All three enzymes act on selenocysteine and cysteine to produce Se(0) and S(0), respectively. In the present study, we demonstrate the ability of each E. coli NifS-like protein to function as a selenium delivery protein for the in vitro biosynthesis of selenophosphate by E. coli wild-type SPS. Significantly, the SPS (C17S) mutant, which is inactive in the standard in vitro assay with selenide as substrate, was found to exhibit detectable activity in the presence of CsdB, CSD, or IscS and l-selenocysteine. Taken together the ability of the NifS-like proteins to generate a selenium substrate for SPS and the activation of the SPS (C17S) mutant suggest a selenium delivery function for the proteins in vivo.  相似文献   

7.
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate from selenide and ATP. Characterization of selenophosphate synthetase revealed the determined K(m) value for selenide is far above the optimal concentration needed for growth and approached levels which are toxic. Selenocysteine lyase enzymes, which decompose selenocysteine to elemental selenium (Se(0)) and alanine, were considered as candidates for the control of free selenium levels in vivo. The ability of a lyase protein to generate Se(0) in the proximity of SPS maybe an attractive solution to selenium toxicity as well as the high K(m) value for selenide. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, were characterized. All three proteins exhibit lyase activity on L-cysteine and L-selenocysteine and produce sulfane sulfur, S(0), or Se(0) respectively. Each lyase can effectively mobilize Se(0) from L-selenocysteine for selenophosphate biosynthesis.  相似文献   

8.
Mutation of a single gene, referred to as selA1 in Salmonella typhimurium and as selD in Escherichia coli, results in the inability of these organisms to insert selenium specifically into the selenopolypeptides of formate dehydrogenase and into the 2-selenouridine residues of tRNAs. The mutation does not involve transport of selenite into the cell or reduction of selenite to selenide since both mutant strains synthesize selenocysteine and selenomethionine from added selenite and incorporate these selenoamino acids non-specifically into numerous proteins of the bacterial cells. Complementation of the mutation in S. typhimurium with the selD gene from E. coli indicates functional identity of the selA1 and selD genes. Although the selA1 gene maps at approximately 21 min on the S. typhimurium chromosome and the selD gene at approximately 38 min on the E. coli chromosome, only a single gene in wild-type S. typhimurium hybridized to the E. coli selD gene probe. Transformation of the mutant Salmonella strain with a plasmid bearing the E. coli selD gene restored formate dehydrogenase activity, 75Se incorporation into formate dehydrogenase seleno-polypeptides and [75Se]seleno-tRNA synthesis. Transformation with an additional plasmid carrying an E. coli formate dehydrogenase selenopolypeptide-lacZ gene fusion showed that the selD gene allowed readthrough of the UGA codon and synthesis of beta-galactosidase in the Salmonella mutant.  相似文献   

9.
The folC gene of Escherichia coli, cloned in a pUC19 vector, was mutagenized by progressive deletions from both the 5' and the 3' ends and by TAB linker insertion. A number of 5'-deleted genes, which had the initiator ATG codon removed, produced a truncated gene product, in reduced amounts, from a secondary initiation site. The most likely position of this site at a GTG codon located 35 codons downstream of the normal start site. This product could complement the folC mutation in E. coli strain SF4 as well as a strain deleted in the folC gene. The specific activity of extracts of the mutant enzyme are 4-16% that of the wild type enzyme for the folylpolyglutamate synthetase activity and 6-19% for the dihydrofolate synthetase activity. The relative amount of protein expressed by the mutant, compared to the wild type, in maxicells was comparable to the relative specific activity, suggesting that the kcat of the mutant enzyme is similar to that of the wild type. Mutants with up to 14 amino acids deleted from the carboxy terminal could still complement the folC deletion mutant. Seven out of ten linker insertions dispersed through the coding region of the gene showed complementation of the folC mutation in strain SF4 but none of these insertion mutants were able to complement the strain containing a deleted folC gene. None of the carboxy terminal or linker insertion mutants had a specific activity greater than 0.5% that of the wild type enzyme. The dihydrofolate synthetase and folylpolyglutamate synthetase activities behaved similarly in all mutants, both retaining a large fraction of the wild type activity in the amino terminal deletions and both being very low in the carboxy terminal deletions and linker insertion mutants. These studies are consistent with a single catalytic site for the two activities catalyzed by this enzyme.  相似文献   

10.
Morey M  Serras F  Corominas M 《FEBS letters》2003,534(1-3):111-114
Several lines of evidence indicate that selenoproteins mainly act as cellular antioxidants. Here, we test this idea comparing the sensitivity to oxidative stress (paraquat and hydrogen peroxide) between wild type and heterozygous flies for the selenophosphate synthetase selD(ptuf) mutation. Whereas under normal laboratory conditions no difference in life span is observed, a significant decrease is seen in heterozygous flies treated with oxidant agents. In contrast, overexpression of the selD gene in motoneurons did not extend longevity. Our results strongly suggest that selD haploinsufficiency makes heterozygous flies more sensitive to oxidative stress and add further evidence to the role of selenoproteins as cellular antioxidants.  相似文献   

11.
To study the function of selenoproteins in development and growth we have used a lethal mutation (selD(ptuf)) of the Drosophila homologous selenophosphate synthetase (selD) gene. This enzyme is involved in the selenoprotein biosynthesis. The selD(ptuf) loss-of-function mutation causes aberrant cell proliferation and differentiation patterns in the brain and imaginal discs, as deduced from genetic mosaics, patterns of gene expression and analysis of cell cycle markers. In addition to that, selenium metabolism is also necessary for the ras/MAPKinase signal tansduction pathway. Therefore, the use of Drosophila imaginal discs and brain and in particular the selD(ptuf) mutation, provide an excellent model to investigate the role of selenoproteins in the regulation of cell proliferation, growth and differentiation.  相似文献   

12.
Gene grdA, which encodes selenoprotein A of the glycine reductase complex from Clostridium sticklandii, was identified and characterized. This gene encodes a protein of 158 amino acids with a calculated M(r) of 17,142. The known sequence of 15 amino acids around the selenocysteine residue and the known carboxy terminus of the protein are correctly predicted by the nucleotide sequence. An opal termination codon (TGA) corresponding to the location of the single selenocysteine residue in the polypeptide was found in frame at position 130. The C. sticklandii grdA gene was inserted behind the tac promotor of an Escherichia coli expression vector. An E. coli strain transformed with this vector produced an 18-kDa polypeptide that was not detected in extracts of nontransformed cells. Affinity-purified anti-C. sticklandii selenoprotein A immunoglobulin G reacted specifically with this polypeptide, which was indistinguishable from authentic C. sticklandii selenoprotein A by immunological analysis. Addition of the purified expressed protein to glycine reductase protein components B and C reconstituted the active glycine reductase complex. Although synthesis of enzymically active protein A depended on the presence of selenium in the growth medium, formation of immunologically reactive protein did not. Moreover, synthesis of enzymically active protein in a transformed E. coli selD mutant strain indicated that there is a nonspecific mechanism of selenocysteine incorporation. These findings imply that mRNA secondary structures of C. sticklandii grdA are not functional for UGA-directed selenocysteine insertion in the E. coli expression system.  相似文献   

13.
In contrast to Escherichia coli and yeast thioredoxin reductases, the human placental enzyme contains an additional redox center consisting of a cysteine-selenocysteine pair that precedes the C-terminal glycine residue. This reactive selenocysteine-containing center imbues the enzyme with its unusually wide substrate specificity. For expression of the human gene in E. coli, the sequence corresponding to the SECIS element required for selenocysteine insertion in E. coli formate dehydrogenase H was inserted downstream of the TGA codon in the human thioredoxin reductase gene. Omission of this SECIS element from another construct resulted in termination at UGA. Change of the TGA codon to TGT gave a mutant enzyme form in which selenocysteine was replaced with cysteine. The three gene products were purified using a standard isolation protocol. Binding properties of the three proteins to the affinity resins used for purification and to NADPH were similar. The three proteins occurred as dimers in the native state and exhibited characteristic thiolate-flavin charge transfer spectra upon reduction. With DTNB as substrate, compared to native rat liver thioredoxin reductase, catalytic activities were 16% for the recombinant wild type enzyme, about 5% for the cysteine mutant enzyme, and negligible for the truncated enzyme form.  相似文献   

14.
15.
The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed by chemical determination of the amino acid sequence of a tryptic peptide derived from the purified mutant enzyme. The mutation lies at the N-terminal end of a 16 residue sequence that is highly conserved in E. coli, Bacillus subtilis, and rat PRPP synthetases and has the following consensus sequence: DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6-fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent cation binds to PRPP synthetase and serves as a bridge to the alpha-phosphate of ATP and AMP at the active site. The prsA1 mutation appears to alter this divalent cation site.  相似文献   

16.
Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.  相似文献   

17.
The selenophosphate synthetases from several organisms contain a selenocysteine residue in their active site where the Escherichia coli enzyme contains a cysteine. The synthesis of these enzymes, therefore, depends on their own reaction product. To analyse how this self-dependence is correlated with the selenium status, e.g. after recovery from severe selenium starvation, we expressed the gene for the selenocysteine-containing selenophosphate synthetase from Haemophilus influenzae (selD HI) in an E. coliΔselD strain. Gene selD HI gave rise to a selenium-containing gene product and also supported – via its activity – the formation of E. coli selenoproteins. The results provide evidence either for the suppression of the UGASec codon with the insertion of an amino acid allowing the formation of a functional product or for a bypass of the selenophosphate requirement. We also show that the selenocysteine synthesis and the insertion systems of the two organisms are fully compatible despite conspicuous differences in the mRNA recognition motif. Received: 8 July 1997 / Accepted: 3 September 1997  相似文献   

18.
In this paper we examine the functionality of Glu-297 from the -polypeptide of Phaseolus vulgaris glutamine synthetase (EC 6.3.1.2). For this purpose, the gln cDNA was recombinantly expressed in Escherichia coli, and site-directed mutants constructed, in which this residue was replaced by alanine. The level of glutamine synthetase transferase catalytic activity in the mutant strain was 70-fold lower while biosynthetic activity remained practically unaffected. Kinetic parameters for both enzyme activities were not greatly altered except for the Km for ammonium in biosynthetic activity, which increased 100-fold. A similar result was reported when mutagenizing Glu-327 from E. coli glutamine synthetase, a residue shown to be present at the active site. This suggests that the Glu residue mutated in the higher-plant enzyme could develop a similar catalytic role to that of bacteria. Another characteristic feature of the mutant protein was its higher resistance to inhibition of the biosynthetic activity by L-methionine sulfoximine, a typical inhibitor of glutamine synthetase. In addition, we show that immunoreactivity of the glutamine synthetase mutant protein, both under native and denaturing conditions, is similar to the wild type, indicating that no deep conformational changes were produced as a consequence of the introduced mutation. However, structural changes in the active site can be predicted from alterations detected in the behaviour of the mutant protein towards affinity chromatography on 2,5-ADP-Sepharose, as compared to the wild type. Nevertheless, complementation of an E. coli glnA mutation indicated that the E297A mutant enzyme was physiologically functional.  相似文献   

19.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine.  相似文献   

20.
Active bovine selenophosphate synthetase 2, not having selenocysteine   总被引:1,自引:0,他引:1  
During the course of studying selenocysteine (Sec) synthesis mechanisms in mammals, we prepared selenophosphate synthetase (SPS) from bovine liver by 4-step chromatography. In the last step of chromatography of hydroxyapatite, we found a protein band of molecular mass 33 kDa on SDS-PAGE, consistent with the pattern of SPS activity that was indirectly manifested by [75Se]Sec production activity; however, we could not detect significant Se content in this active fraction. We also found a clear band of 33 kDa by Western blotting with antibody against a common peptide (387-401) in SPS2. We detected selenophosphate as the product of this active enzyme in the reaction mixture, composed of ATP, [75Se]H2Se and SPS. Chemically synthesized selenophosphate plays a role in Sec synthesis, not the addition of this enzyme. These results support that the product of SPS2 is selenophosphate itself. During this investigation, the probable sequence of bovine SPS2 not having Sec was reported in the blast information and the molecular mass was near with the protein in this report. Thus, bovine active SPS2 of molecular mass 33 kDa does not contain Sec. K. Furumiya and K. Kanaya contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号